(CHAPTER |

Security Architecture
and Design

This chapter presents the following:
» Computer hardware architecture
» Operating system architectures
* Trusted computing base and security mechanisms
* Protection mechanisms within an operating system
* Various security models
* Assurance evaluation criteria and ratings
* Certification and accreditation processes
* Attack types

Computer and information security covers many areas within an enterprise. Each area has
security vulnerabilities and, hopefully, some corresponding countermeasures that raise the
security level and provide better protection. Not understanding the different areas and se-
curity levels of network devices, operating systems, hardware, protocols, and applications
can cause security vulnerabilities that can affect the environment as a whole.

Two fundamental concepts in computer and information security are the security
policy and security model. A security policy is a statement that outlines how entities ac-
cess each other, what operations different entities can carry out, what level of protection
is required for a system or software product, and what actions should be taken when
these requirements are not met. The policy outlines the expectations that the hardware
and software must meet to be considered in compliance. A security model outlines the
requirements necessary to properly support and implement a certain security policy. If a
security policy dictates that all users must be identified, authenticated, and authorized
before accessing network resources, the security model might lay out an access control
matrix that should be constructed so it fulfills the requirements of the security policy. If
a security policy states that no one from a lower security level should be able to view or
modify information at a higher security level, the supporting security model will outline
the necessary logic and rules that need to be implemented to ensure that under no cir-
cumstances can a lower-level subject access a higher-level object in an unauthorized

CISSP All-in-One Exam Guide

)

manner. A security model provides a deeper explanation of how a computer operating
system should be developed to properly support a specific security policy.

NOTE Individual systems and devices can have their own security policies.
These are not the organizational security policies that contain management’s
directives. The systems’ security policies, and the models they use, should
enforce the higher-level organizational security policy that is in place.A system
policy dictates the level of security that should be provided by the individual
device or operating system.

Computer security can be a slippery term because it means different things to differ-
ent people. Many aspects of a system can be secured, and security can happen at various
levels and to varying degrees. As stated in previous chapters, information security con-
sists of the following main attributes:

e Availability Prevention of loss of, or loss of access to, data and resources
e Integrity Prevention of unauthorized modification of data and resources

e Confidentiality Prevention of unauthorized disclosure of data and resources

These main attributes branch off into more granular security attributes, such as
authenticity, accountability, nonrepudiation, and dependability. How does a company
know which of these it needs, to what degree they are needed, and whether the operat-
ing systems and applications they use actually provide these features and protection?
These questions get much more complex as one looks deeper into the questions and
products themselves. Companies are not just concerned about e-mail messages being
encrypted as they pass through the Internet. They are also concerned about the confi-
dential data stored in their databases, the security of their web farms that are connected
directly to the Internet, the integrity of data-entry values going into applications that
process business-oriented information, internal users sharing trade secrets, external at-
tackers bringing down servers and affecting productivity, viruses spreading, the internal
consistency of data warehouses, and much more.

These issues not only affect productivity and profitability, but also raise legal and
liability issues with regard to securing data. Companies, and the management that runs
them, can be held accountable if any one of the many issues previously mentioned goes
wrong. So it is, or at least it should be, very important for companies to know what
security they need and how to be properly assured that the protection is actually being
provided by the products they purchase.

Many of these security issues must be thought through before and during the design
and architectural phase for a product. Security is best if it is designed and built into the
foundation of operating systems and applications and not added as an afterthought.
Once security is integrated as an important part of the design, it has to be engineered,
implemented, tested, audited, evaluated, certified, and accredited. The security that a
product provides must be rated on the availability, integrity, and confidentiality it
claims to provide. Consumers then use these ratings to determine if specific products

Chapter 5: Security Architecture and Design

3

provide the level of security they require. This is a long road, with many entities in-
volved with different responsibilities.

This chapter takes you from the steps that are necessary before actually developing
an operating system to how these systems are evaluated and rated by governments and
other agencies, and what these ratings actually mean. However, before we dive into
these concepts, it is important to understand how the basic elements of a computer
system work. These elements are the pieces that make up any computer’s architecture.

Computer Architecture

Put the processor over there by the plant, the memory by the window, and the secondary storage
upstairs.

Computer architecture encompasses all of the parts of a computer system that are
necessary for it to function, including the operating system, memory chips, logic cir-
cuits, storage devices, input and output devices, security components, buses, and net-
working components. The interrelationships and internal working of all of these parts
can be quite complex, and making them work together in a secure fashion consists of
complicated methods and mechanisms. Thank goodness for the smart people who
figured this stuff out! Now it is up to us to learn how they did it and why.

The more you understand how these different pieces work and process data, the more
you will understand how vulnerabilities actually occur and how countermeasures work
to impede and hinder vulnerabilities from being introduced, found, and exploited.

NOTE This chapter interweaves the hardware and operating system
architectures and their components to show you how they work together.

The Central Processing Unit

The CPU seems complex. How does it work?
Response: Black magic. It uses eye of bat, tongue of goat, and some transistors.

The central processing unit (CPU) is the brain of a computer. In the most general
description possible, it fetches instructions from memory and executes them. Although
a CPU is a piece of hardware, it has its own instruction sets (provided by the operating
system) that are necessary to carry out its tasks. Each CPU type has a specific architec-
ture and set of instructions that it can carry out. The operating system must be designed
to work within this CPU architecture. This is why one operating system may work on a
Pentium processor but not on a SPARC processor.

NOTE Scalable Processor Architecture (SPARC) is a type of Reduced
Instruction Set Computing (RISC) chip developed by Sun Microsystems.
SunOS§, Solaris, and some Unix operating systems have been developed to
work on this type of processor.

CISSP All-in-One Exam Guide

4

The chips within the CPU cover only a couple of square inches, but contain over 40
million transistors. All operations within the CPU are performed by electrical signals at
different voltages in different combinations, and each transistor holds this voltage,
which represents Os and 1s to the computer. The CPU contains registers that point to
memory locations that contain the next instructions to be executed and that enable the
CPU to keep status information of the data that need to be processed. A register is a
temporary storage location. Accessing memory to get information on what instructions
and data must be executed is a much slower process than accessing a register, which is
a component of the CPU itself. So when the CPU is done with one task, it asks the reg-
isters, “Okay, what do I have to do now?” And the registers hold the information that
tells the CPU what its next job is.

The actual execution of the instructions is done by the arithmetic logic unit (ALU).
The ALU performs mathematical functions and logical operations on data. The ALU
can be thought of as the brain of the CPU, and the CPU as the brain of the computer.

Control Decode
unit unit

Arithmetic Prefetch
logic unit unit

Registers \O> —— Instruction
cache

Bus unit
(main memory)

Software holds its instructions and data in memory. When action needs to take
place on the data, the instructions and data memory addresses are passed to the CPU
registers, as shown in Figure 5-1. When the control unit indicates that the CPU can
process them, the instructions and data memory addresses are passed to the CPU for
actual processing, number crunching, and data manipulation. The results are sent back
to the requesting process’s memory address.

An operating system and applications are really just made up of lines and lines of
instructions. These instructions contain empty variables, which are populated at run
time. The empty variables hold the actual data. There is a difference between instructions
and data. The instructions have been written to carry out some type of functionality on
the data. For example, let's say you open a Calculator application. In reality, this pro-
gram is just lines of instructions that allow you to carry out addition, subtraction, divi-
sion, and other types of mathematical functions that will be executed on the data you
provide. So, you type in 3 + 5. The 3 and the 5 are the data values. Once you click the =
button, the Calculator program tells the CPU it needs to take the instructions on how to
carry out addition and apply these instructions to the two data values 3 and 5. The ALU
carries out this instruction and returns the result of 8 to the requesting program. This is

Chapter 5: Security Architecture and Design

5

Application memory

i Addx+y =1

Application ;
K N —— Instructions Data
4
Addx+y=z [—p \
Control \ z=5
unit \
. Processor >CPU
Registers

ALU

Figure 5-1 Instruction and data addresses are passed to the CPU for processing.

when you see the value 8 in the Calculator’s field. To users, it seems as though the Cal-
culator program is doing all of this on its own, but it is incapable of this. It depends
upon the CPU and other components of the system to carry out this type of activity.

The control unit manages and synchronizes the system while different applications’
code and operating system instructions are being executed. The control unit is the com-
ponent that fetches the code, interprets the code, and oversees the execution of the dif-
ferent instruction sets. It determines what application instructions get processed and in
what priority and time slice. It controls when instructions are executed, and this execu-
tion enables applications to process data. The control unit does not actually process the
data. It is like the traffic cop telling traffic when to stop and start again, as illustrated in
Figure 5-2. The CPU'’s time has to be sliced up into individual units and assigned to
processes. It is this time slicing that fools the applications and users into thinking the
system is actually carrying out several different functions at one time. While the operat-
ing system can carry out several different functions at one time (multitasking), in real-
ity the CPU is executing the instructions in a serial fashion (one at a time).

A CPU has several different types of registers, containing information about the
instruction set and data that must be executed. General registers are used to hold vari-
ables and temporary results as the ALU works through its execution steps. The general
registers are like the ALU'’s scratch pad, which it uses while working. Special registers
(dedicated registers) hold information such as the program counter, stack pointer, and
program status word (PSW). The program counter register contains the memory address
of the next instruction to be fetched. After that instruction is executed, the program
counter is updated with the memory address of the next instruction set to be processed.
It is similar to a boss and secretary relationship. The secretary keeps the boss on sched-
ule and points her (the boss) to the necessary tasks she must carry out. This allows the

CISSP All-in-One Exam Guide

6

IO0I 100111
OI 1001110
IIIOOOI 10

100111000 Processor

Control
unit Computed
data

L

Registers containing
instruction sets

| oo ——0——0 |

v

Figure 5-2 The control unit works as a traffic cop, indicating when instructions are sent to the
processor.

boss to just concentrate on carrying out the tasks instead of having to worry about the
“busy work” being done in the background.

Before we get into what a stack pointer is, we must first know what a stack is. Each
process has its own stack, which is a memory segment the process can read from and
write to. Let’s say you and I need to communicate through a stack. What I do is put all
of the things I need to say to you in a stack of papers. The first paper tells you how you
can respond to me when you need to, which is called a return pointer. The next paper
has some instructions I need you to carry out. The next piece of paper has the data you
must use when carrying out these instructions. So, [write down on individual pieces of
paper all that I need you to do for me and stack them up. When I am done, I tell you to
read my stack of papers. You take the first page off the stack and carry out the request.
Then you take the second page and carry out that request. You continue to do this until
you are at the bottom of the stack, which contains my return pointer. You look at this
return pointer (which is my memory address) to know where to send the results of all
the instructions I asked you to carry out. This is how processes communicate to other
processes and to the CPU. One process stacks up its information that it needs to com-
municate to the CPU. The CPU has to keep track of where it is in the stack, which is the
purpose of the stack pointer. Once the first item on the stack is executed, then the stack
pointer moves down to tell the CPU where the next piece of data is located.

NOTE The traditional way of explaining how a stack works is to use the
analogy of stacking up trays in a cafeteria. VWhen people are done eating, they
place their trays on a stack of other trays, and when the cafeteria employees
need to get the trays for cleaning, they take the last tray placed on top and
work down the stack. This analogy is used to explain how a stack works in the
mode of “last in, first off.” The process being communicated to takes the last
piece of data the requesting process laid down from the top of the stack and
works down the stack.

Chapter 5: Security Architecture and Design

The program status word (PSW) holds different condition bits. One of the bits indi-
cates whether the CPU should be working in user mode (also called problem state) or
privileged mode (also called kernel or supervisor mode). The crux of this chapter is to
teach you how operating systems protect themselves. They need to protect themselves
from applications, utilities, and user activities if they are going to provide a stable and
safe environment. One of these protection mechanisms is implemented through the
use of these different execution modes. When an application needs the CPU to carry out
its instructions, the CPU works in user mode. This mode has a lower privilege level and
many of the CPU’s instructions and functions are not available to the requesting ap-
plication. The reason for the extra caution is that the developers of the operating system
do not know who developed the application or how it is going to react, so the CPU
works in a lower privileged mode when executing these types of instructions. By anal-
ogy, if you are expecting visitors who are bringing their two-year-old boy, you move all
of the breakables that someone under three feet can reach. No one is ever sure what a
two-year-old toddler is going to do, but it usually has to do with breaking something.
An operating system and CPU are not sure what applications are going to attempt,
which is why this code is executed in a lower privilege.

If the PSW has a bit value that indicates the instructions to be executed should be
carried out in privileged mode, this means a trusted process (an operating system pro-
cess) made the request and can have access to the functionality that is not available in
user mode. An example would be if the operating system needed to communicate with
a peripheral device. This is a privileged activity that applications cannot carry out. When
these types of instructions are passed to the CPU, the PSW is basically telling the CPU,
“The process that made this request is an all right guy. We can trust him. Go ahead and
carry out this task for him.”

Memory addresses of the instructions and data to be processed are held in registers
until needed by the CPU. The CPU is connected to an address bus, which is a hardwired
connection to the RAM chips in the system and the individual input/output (I/O) de-
vices. Memory is cut up into sections that have individual addresses associated with
them. I/O devices (CD-ROM, USB device, hard drive, floppy drive, and so on) are also
allocated specific unique addresses. If the CPU needs to access some data, either from
memory or from an I/O device, it sends down the address of where the needed data are
located. The circuitry associated with the memory or I/O device recognizes the address
the CPU sent down the address bus and instructs the memory or device to read the re-
quested data and put it on the data bus. So the address bus is used by the CPU to indi-
cate the location of the instructions to be processed, and the memory or I/O device
responds by sending the data that reside at that memory location through the data bus.
This process is illustrated in Figure 5-3.

Once the CPU is done with its computation, it needs to return the results to the
requesting program'’s memory. So, the CPU sends the requesting program’s address
down the address bus and sends the new results down the data bus with the command
write. These new data are then written to the requesting program’s memory space.

The address and data buses can be 8, 16, 32, or 64 bits wide. Most systems today use
a 32-bit address bus, which means the system can have a large address space (23?). Sys-
tems can also have a 32-bit data bus, which means the system can move data in parallel

1

CISSP All-in-One Exam Guide

8

Figure 5-3
Address and data
buses are separate

and have specific cPu
functionality.
< > ROM 4—/
>
o
(=%
9 g
o w
g8 o
g]
w 4—/ |
|
< > RAM |
I
|
|
|
|

AN
v
A

\

\\\

1/1O

Control
bus

back and forth between memory, I/O devices, and the CPU. (A 32-bit data bus means
the size of the chunks of data a CPU can request at a time is 32 bits.)

Multiprocessing

Some specialized computers have more than one CPU, for increased performance. An
operating system must be developed specifically to be able to understand and work
with more than one processor. If the computer system is configured to work in symmet-
ric mode, this means the processors are handed work as needed as shown with CPU 1
and CPU 2 in Figure 5-4. It is like a load-balancing environment. When a process needs
instructions to be executed, a scheduler determines which processor is ready for more
work and sends it on. If a processor is going to be dedicated for a specific task or ap-
plication, all other software would run on a different processor. In Figure 5-4, CPU 4 is
dedicated to one application and its threads, while CPU 3 is used by the operating sys-
tem. When a processor is dedicated as in this example, the system is working in asym-
metric mode. This usually means the computer has some type of time-sensitive applica-
tion that needs its own personal processor. So, the system scheduler will send instruc-
tions from the time-sensitive application to CPU 4 and send all the other instructions
(from the operating system and other applications) to CPU 3. The differences are shown
in Figure 5-4.

Chapter 5: Security Architecture and Design

= R

Operating User User
system thread thread
User User Operating User
thread thread system thread
User Operating User
thread system thread

CPU 3 CPU 4

Symmetric mode Asymmetric mode

Figure 5-4 Symmetric mode and asymmetric mode

Operating System Architecture

An operating system provides an environment for applications and users to work with-
in. Every operating system is a complex beast, made up of various layers and modules
of functionality. It has the responsibility of managing the hardware components, mem-
ory management, [/O operations, file system, process management, and providing sys-
tem services. We next look at each of these responsibilities in every operating system.
However, you must realize that whole books are written on just these individual topics,
so the discussion here will only be topical.

Process Management
Well just look at all of these processes squirming around like little worms. We need some real
organization here!

Operating systems, utilities, and applications in reality are just lines and lines of
instructions. They are static lines of code that are brought to life when they are initial-
ized and put into memory. Applications work as individual units, called processes, and
the operating system has several different processes carrying out various types of func-
tionality. A process is the set of instructions that is actually running. A program is not
considered a process until it is loaded into memory and activated by the operating

9

CISSP All-in-One Exam Guide

10

Processor Evolution
The following table provides the different characteristics of the various processors
used over the years.

Name Date Transistors Microns Clock Data MIPS
Speed Width

8080 1974 6000 6 2MHz 8 bits 0.64

80286 1982 134,000 1.5 6MHz 16 bits |

Pentium 1993 3,100,000 0.8 60MHz 32 bits, 100
64-bit bus

Pentium 4 2000 42,000,000 0.18 1.5GHz 32 bits, 1700
64-bit bus

The following list defines the terms of measure used in the preceding table:

e Microns Indicates the width of the smallest wire on the CPU chip
(a human hair is 100 microns thick).

e Clock speed Indicates the speed at which the processor can execute
instructions. An internal clock is used to regulate the rate of execution,
which is broken down into cycles. A system that runs at 100MHz means
there are 100 million clock cycles per second. Processors working at
4GHz are now available, which means the CPU can execute 4 thousand
million cycles per second.

e Data width Indicates the amount of data the ALU can accept and
process; 64-bit bus refers to the size of the data bus. So, modern systems
fetch 64 bits of data at a time, but the ALU works only on instruction
sets in 32-bit sizes.

e MIPS Millions of instructions per second, which is a basic indication
of how fast a CPU can work (but other factors are involved, such as
clock speed).

system. When a process is created, the operating system assigns resources to it, such as
a memory segment, CPU time slot (interrupt), access to system application program-
ming interfaces (APIs), and files to interact with. The collection of the instructions and
the assigned resources is referred to as a process.

The operating system has many processes, which are used to provide and maintain
the environment for applications and users to work within. Some examples of the func-
tionality that individual processes provide include displaying data onscreen, spooling
print jobs, and saving data to temporary files. Today’s operating systems provide multi-
programming, which means that more than one program (or process) can be loaded
into memory at the same time. This is what allows you to run your antivirus software,
word processor, personal firewall, and e-mail client all at the same time. Each of these
applications runs as one or more processes.

Chapter 5: Security Architecture and Design

NOTE Many resources state that today’s operating systems provide
multiprogramming and multitasking. This is true, in that multiprogramming
just means more than one application can be loaded into memory at the
same time. But in reality, multiprogramming was replaced by multitasking,
which means more than one application can be in memory at the same
time and the operating system can deal with requests from these different
applications simultaneously.

Earlier operating systems wasted their most precious resource—CPU time. For ex-
ample, when a word processor would request to open a file on a floppy drive, the CPU
would send the request to the floppy drive and then wait for the floppy drive to initial-
ize, for the head to find the right track and sector, and finally for the floppy drive to
send the data via the data bus to the CPU for processing. To avoid this waste of CPU
time, multitasking was developed, which enabled more than one program to be loaded
into memory at one time. Instead of sitting idle waiting for activity from one process,
the CPU could execute instructions for other processes, thereby speeding up the neces-
sary processing required for all the different processes.

As an analogy, if you (CPU) put bread in a toaster (process) and just stand there wait-
ing for the toaster to finish its job, you are wasting time. On the other hand, if you put
bread in the toaster and then, while it’s toasting, feed the dog, make coffee, and come up
with a solution for world peace, you are being more productive and not wasting time.

Operating systems started out as cooperative and then evolved into preemptive
multitasking. Cooperative multitasking, used in Windows 3.1 and early Macintosh sys-
tems, required the processes to voluntarily release resources they were using. This was
not necessarily a stable environment, because if a programmer did not write his code
properly to release a resource when his application was done using it, the resource
would be committed indefinitely to his application and thus be unavailable to other
processes. With preemptive multitasking, used in Windows 9x, NT, 2000, XP, and in
Unix systems, the operating system controls how long a process can use a resource. The
system can suspend a process that is using the CPU and allow another process access to
it through the use of time sharing. So, in operating systems that used cooperative multi-
tasking, the processes had too much control over resource release, and when an appli-
cation hung, it usually affected all the other applications and sometimes the operating
system itself. Operating systems that use preemptive multitasking run the show, and
one application does not negatively affect another application as easily.

Different operating system types work within different process models. For exam-
ple, Unix and Linux systems allow their processes to create new children processes,
which is referred to as forking. Let's say you are working within a shell of a Linux system.
That shell is the command interpreter and an interface that enables the user to interact
with the operating system. The shell runs as a process. When you type in a shell the
command cat filel file2 | grep stuff, you are telling the operating system
to concatenate (cat) the two files and then search (grep) for the lines that have the
value of stuff in them. When you press the ENTER key, the shell forks two children
processes—one for the cat command and one for the grep command. Each of these
children processes takes on the characteristics of the parent process, but has its own
memory space, stack, and program counter values.

CISSP All-in-One Exam Guide

12

A process can run in running state (CPU is executing its instructions and data),
ready state (waiting to send instructions to the CPU), or blocked state (waiting for input
data, such as keystrokes from a user). These different states are illustrated in Figure 5-5.
When a process is blocked, it is waiting for some type of data to be sent to it. In the
preceding example of typing the command cat filel file2 | grep stuff, the
grep process cannot actually carry out its functionality of searching until the first pro-
cess (cat) is done combining the two files. The grep process will put itself to sleep and
will be in the blocked state until the cat process is done and sends the grep process
the input it needs to work with.

NOTE Not all operating systems create and work in the process hierarchy
like Unix and Linux systems.Windows systems do not fork new children
processes, but instead create new threads that work within the same context
of the parent process.This is deeper than what you need to know for the
CISSP exam, but life is not just about this exam—right?

The operating system is responsible for creating new processes, assigning them re-
sources, synchronizing their communication, and making sure nothing insecure is tak-
ing place. The operating system keeps a process table, which has one entry per process.
The table contains each individual process’s state, stack pointer, memory allocation,
program counter, and status of open files in use. The reason the operating system docu-
ments all of this status information is that the CPU needs all of it loaded into its regis-
ters when it needs to interact with, for example, process 1. When process 1’s CPU time
slice is over, all of the current status information on process 1 is stored in the process
table so that when its time slice is open again, all of this status information can be put
back into the CPU registers. So, when it is process 2's time with the CPU, its status in-
formation is transferred from the process table to the CPU registers, and transferred
back again when the time slice is over. These steps are shown in Figure 5-6.

How does a process know when it can communicate with the CPU? This is taken
care of by using interrupts. An operating system fools us, and applications, into think-
ing it and the CPU are carrying out all tasks (operating system, applications, memory,
I/O, and user activities) simultaneously. In fact, this is impossible. Most CPUs can do
only one thing at a time. So the system has hardware and software interrupts. When a

Program loaded Scheduled

Termination

Waiting

Blocked

Figure 5-5 Processes enter and exit different states.

Chapter 5: Security Architecture and Design

Process | Process Table

Process |
Pointer

Memory address
PSW

Process 2
Pointer

Memory address
PSW

Registers

Process 2

13

. Process | needs its code executed.
. OS moves process |’s status data into the

CPU register.

. CPU works on process |’s data.
. Process 2 needs its code to be executed.
. OS moves process |’s data back to the

process table.

. OS moves process 2’s status data into the

CPU registers.

. CPU works on process 2’s data.

Figure 5-6 A process table contains process status data that the CPU requires.

device needs to communicate with the CPU, it has to wait for its interrupt to be called
upon. The same thing happens in software. Each process has an interrupt assigned to it.
It is like pulling a number at a customer service department in a store. You can't go up
to the counter until your number has been called out.

When a process is interacting with the CPU and an interrupt takes place (another
process has requested access to the CPU), the current process’s information is stored in
the process table, and the next process gets its time to interact with the CPU.

NOTE Some critical processes cannot afford to have their functionality
interrupted by another process.The operating system is responsible for
setting the priorities for the different processes.VWWhen one process needs to
interrupt another process, the operating system compares the priority levels
of the two processes to determine if this interruption should be allowed.

There are two categories of interrupts: maskable and non-maskable. A maskable
interrupt is assigned to an event that may not be overly important and the programmer
can indicate that if that interrupt calls, the program does not stop what it is doing. This

CISSP All-in-One Exam Guide

14

means the interrupt is ignored. Non-maskable interrupts can never be overridden by an
application because the event that has this type of interrupt assigned to it is critical. As
an example, the reset button would be assigned a non-maskable interrupt. This means
that when this button is pushed, the CPU carries out its instructions right away.

As an analogy, a boss can tell her administrative assistant she is not going to take any
calls unless the Pope or Elvis phones. This means all other people will be ignored or
masked (maskable interrupt), but the Pope and Elvis will not be ignored (non-maskable
interrupt). This is probably a good policy. You should always accept calls from either the
Pope or Elvis. Just remember not to use any bad words when talking to the Pope.

The watchdog timer is an example of a critical process that must always do its thing.
This process will reset the system with a warm boot if the operating system hangs and
cannot recover itself. For example, if there is a memory management problem and the
operating system hangs, the watchdog timer will reset the system. This is one mecha-
nism that ensures the software provides more of a stable environment.

Thread Management
What are all of these hair-like things hanging off of my processes?
Response: Threads.

As described earlier, a process is a program in memory. More precisely, a process is
the program’s instructions and all the resources assigned to the process by the operating
system. It is just easier to group all of these instructions and resources together and
control it as one entity, which is a process. When a process needs to send something to
the CPU for processing, it generates a thread. A thread is made up of an individual in-
struction set and the data that must be worked on by the CPU.

Operating system

Process #| Process #2 Process #3

Registers Registers Registers

] |
|

Process #l Process #2 Process #3

Memory segments

Chapter 5: Security Architecture and Design

5

Most applications have several different functions. Word processors can open files,
save files, open other programs (such as an e-mail client), and print documents. Each
one of these functions requires a thread (instruction set) to be dynamically generated.
So, for example, if Tom chooses to print his document, the word processor process
generates a thread that contains the instructions of how this document should be print-
ed (font, colors, text, margins, and so on). If he chooses to send a document via e-mail
through this program, another thread is created that tells the e-mail client to open and
what file needs to be sent. Threads are dynamically created and destroyed as needed.
Once Tom is done printing his document, the thread that was generated for this func-
tionality is destroyed.

A program that has been developed to carry out several different tasks at one time
(display, print, interact with other programs) is capable of running several different
threads simultaneously. An application with this capability is referred to as a multi-
threaded application.

NOTE Each thread shares the same resources of the process that created
it. So, all the threads created by a word processor work in the same memory
space and have access to all the same files and system resources.

Process Scheduling

Scheduling and synchronizing various processes and their activities is part of process
management, which is a responsibility of the operating system. Several components
need to be considered during the development of an operating system, which will dic-
tate how process scheduling will take place. A scheduling policy is created to govern
how threads will interact with other threads. Different operating systems can use differ-
ent schedulers, which are basically algorithms that control the timesharing of the CPU.
As stated earlier, the different processes are assigned different priority levels (interrupts)
that dictate which processes overrule other processes when CPU time allocation is re-
quired. The operating system creates and deletes processes as needed, and oversees
them changing state (ready, blocked, running). The operating system is also responsible
for controlling deadlocks between processes attempting to use the same resources.

Definitions
The concepts of how computer operating systems work can be overwhelming at
times. For test purposes, make sure you understand the following definitions:

e Multiprogramming An operating system can load more than one
program in memory at one time.

e Multitasking An operating system can handle requests from several
different processes loaded into memory at the same time.

e Multithreading An application has the ability to run multiple threads
simultaneously.

e Multiprocessing The computer has more than one CPU.

CISSP All-in-One Exam Guide

16

When a process makes a request for a resource (memory allocation, printer, second-
ary storage devices, disk space, and so on), the operating system creates certain data
structures and dedicates the necessary processes for the activity to be completed. Once
the action takes place (a document is printed, a file is saved, or data are retrieved from
the drive), the process needs to tear down these built structures and release the resourc-
es back to the resource pool so they are available for other processes. If this does not
happen properly, a deadlock situation may occur or a computer may not have enough
resources to process other requests (resulting in a denial of service). A deadlock situa-
tion may occur when each process in a set of processes is waiting for an event to take
place and that event can only be caused by another process in the set. Because each
process is waiting for its required event, none of the processes will carry out their
events—so the processes just sit there staring at each other.

One example of a deadlock situation is when process A commits resource 1 and
needs to use resource 2 to properly complete its task, but process B has committed re-
source 2 and needs resource 1 to finish its job. So both processes are in deadlock be-
cause they do not have the resources they need to finish the function they are trying to
carry out. This situation does not take place as often as it used to, as a result of better
programming. Also, operating systems now have the intelligence to detect this activity
and either release committed resources or control the allocation of resources so they are
properly shared between processes.

Operating systems have different methods of dealing with resource requests and
releases and solving deadlock situations. In some systems, if a requested resource is
unavailable for a certain period of time, the operating system kills the process that is
“holding on to” that resource. This action releases the resource from the process that
had committed it and restarts the process so it is “clean” and available for use by other
applications. Other operating systems might require a program to request all the re-
sources it needs before it actually starts executing instructions, or require a program to
release its currently committed resources before it may acquire more.

Process Activity

Process 1, go into your room and play with your toys. Process 2, go into your room and play with
your toys. No intermingling and no fighting!

Computers can run different applications and processes at the same time. The pro-
cesses have to share resources and play nice with each other to ensure a stable and safe
computing environment that maintains its integrity. Some memory, data files, and vari-
ables are actually shared between different processes. It is critical that more than one
process does not attempt to read and write to these items at the same time. The operat-
ing system is the master program that prevents this type of action from taking place and
ensures that programs do not corrupt each other’s data held in memory. The operating
system works with the CPU to provide time slicing through the use of interrupts to
ensure that processes are provided with adequate access to the CPU. This also makes
certain that critical system functions are not negatively affected by rogue applications.

To protect processes from each other, operating systems can implement process
isolation. Process isolation is necessary to ensure that processes do not “step on each
other’s toes,” communicate in an insecure manner, or negatively affect each other’s
productivity. Older operating systems did not enforce process isolation as well as sys-

Chapter 5: Security Architecture and Design

tems do today. This is why in earlier operating systems, when one of your programs
hung, all other programs, and sometimes the operating system itself, hung. With pro-
cess isolation, if one process hangs for some reason, it will not affect the other software
running. (Process isolation is required for preemptive multitasking.) Different meth-
ods can be used to carry out process isolation:

e Encapsulation of objects
e Time multiplexing of shared resources
e Naming distinctions

e Virtual mapping

When a process is encapsulated, no other process understands or interacts with its
internal programming code. When process A needs to communicate with process B,
process A just needs to know how to communicate with process B’s interface. An inter-
face defines how communication must take place between two processes. As an analo-
gy, think back to how you had to communicate with your third-grade teacher. You had
to call her Mrs. So-and-So, say please and thank you, and speak respectfully to get what-
ever it was you needed. The same thing is true for software components that need to
communicate with each other. They must know how to communicate properly with
each other’s interfaces. The interfaces dictate the type of requests a process will accept
and the type of output that will be provided. So, two processes can communicate with
each other, even if they are written in different programming languages, as long as they
know how to communicate with each other’s interface. Encapsulation provides data
hiding, which means that outside software components will not know how a process
works and will not be able to manipulate the process’s internal code. This is an integ-
rity mechanism and enforces modularity in programming code.

Time multiplexing was already discussed, although we did not use this term. Time
multiplexing is a technology that allows processes to use the same resources. As stated
earlier, a CPU must be shared between many processes. Although it seems as though all
applications are running (executing their instructions) simultaneously, the operating
system is splitting up time shares between each process. Multiplexing means there are
several data sources and the individual data pieces are piped into one communication
channel. In this instance, the operating system is coordinating the different requests
from the different processes and piping them through the one shared CPU. An operat-
ing system must provide proper time multiplexing (resource sharing) to ensure a stable
working environment exists for software and users.

Naming distinctions just means that the different processes have their own name or
identification value. Processes are usually assigned process identification (PID) values,
which the operating system and other processes use to call upon them. If each process
is isolated, that means each process has its own unique PID value.

Virtual mapping is different from the physical mapping of memory. An application
is written such that basically it thinks it is the only program running on an operating
system. When an application needs memory to work with, it tells the operating system's
memory manager how much memory it needs. The operating system carves out that
amount of memory and assigns it to the requesting application. The application uses
its own address scheme, which usually starts at 0, but in reality, the application does

17

CISSP All-in-One Exam Guide

18

not work in the physical address space it thinks it is working in. Rather, it works in the
address space the memory manager assigns to it. The physical memory is the RAM chips
in the system. The operating system chops up this memory and assigns portions of it to
the requesting processes. Once the process is assigned its own memory space, it can ad-
dress this portion however it wishes, which is called virtual address mapping. Virtual
address mapping allows the different processes to have their own memory space; the
memory manager ensures no processes improperly interact with another process’s
memory. This provides integrity and confidentiality.

Memory Management

To provide a safe and stable environment, an operating system must exercise proper
memory management—one of its most important tasks. After all, everything happens
in memory. It's similar to how we depend on oxygen and gravity for our existence. If
either slides out of balance, we're in big trouble.

The goals of memory management are to:

e Provide an abstraction level for programmers
e Maximize performance with the limited amount of memory available

e Protect the operating system and applications loaded into memory

Abstraction means that the details of something are hidden. Developers of applica-
tions do not know the amount or type of memory that will be available in each and
every system their code will be loaded on. If a developer had to be concerned with this
type of detail, then her application would be able to work only on the one system that
maps to all of her specifications. To allow for portability, the memory manager hides all
of the memory issues and just provides the application with a memory segment.

Every computer has a memory hierarchy. Certain small amounts of memory are very
fast and expensive (registers, Fastest,
cache), while larger amounts highest cost,
are slower and less expensive lowest capacity
(RAM, hard drive). The portion
of the operating system that /N
keeps track of how these differ-
ent types of memory are used is
lovingly called the memory
manager. Its jobs are to allocate
and deallocate different mem-
ory segments, enforce access
control to ensure processes are
interacting only with their own
memory segments, and swap N\ /
memory contents from RAM to
the hard drive. Slowest,

lowest cost,
highest capacity

CPU registers

Cache

Main memory

Swap space

1/“\/—\/-\
\JJ_/V_/

Disk storage

Chapter 5: Security Architecture and Design

The memory manager has five basic responsibilities:
Relocation

e Swap contents from RAM to the hard drive as needed (explained later in the
“Virtual Memory” section of this chapter)

e Provide pointers for applications if their instructions and memory segment
have been moved to a different location in main memory

Protection

e Limit processes to interact only with the memory segments assigned to them

e Provide access control to memory segments
Sharing

e Use complex controls to ensure integrity and confidentiality when processes
need to use the same shared memory segments

¢ Allow many users with different levels of access to interact with the same
application running in one memory segment

Logical organization

e Allow for the sharing of specific software modules, such as dynamic link
library (DLL) procedures

Physical organization

e Segment the physical memory space for application and operating system
processes

NOTE A dynamic link library (DLL) is a set of functions that applications
can call upon to carry out different types of procedures. For example, the
Windows operating system has a crypt32.dll that is used by the operating
system and applications for cryptographic functions.Windows has a set of
DLLs, which is just a library of functions to be called upon.

How can an operating system make sure a process only interacts with its memory
segment? When a process creates a thread, because it needs some instructions and data
processed, the CPU uses two registers. A base register contains the beginning address
that was assigned to the process, and a limit register contains the ending address, as il-
lustrated in Figure 5-7. The thread contains an address of where the instruction and
data reside that need to be processed. The CPU compares this address to the base and
limit registers to make sure the thread is not trying to access a memory segment outside
of its bounds. So, the base register makes it impossible for a thread to reference a mem-
ory address below its allocated memory segment, and the limit register makes it impos-
sible for a thread to reference a memory address above this segment.

CISSP All-in-One Exam Guide

20

Figure 5-7 0
Base and limit
registers are used Monitor
to contain a process
in its own memory 256000
segment.
Process |
300040 < 300040
Process 2 Base register
420940 < 420940
Process 3 Limit register
880000
Process 4
1024000

Memory is also protected through the use of user and privileged modes of execu-
tion, as previously mentioned, and covered in more detail later in the “CPU Modes and
Protection Rings” section of this chapter.

Memory Types

The operating system instructions, applications, and data are held in memory, but so are
the basic input/output system (BIOS), device controller instructions, and firmware. They
do not all reside in the same memory location or even the same type of memory. The
different types of memory, what they are used for, and how each is accessed can get a bit
confusing because the CPU deals with several different types for different reasons.

Memory Protection Issues

e Every address reference is validated for protection.

e Two or more processes can share access to the same segment with
potentially different access rights.

e Different instruction and data types can be assigned different levels of
protection.

e Processes cannot generate an unpermitted address or gain access to an
unpermitted segment.

All of these issues make it more difficult for memory management to be car-
ried out properly in a constantly changing and complex system. Any time more
complexity is introduced, it usually means more vulnerabilities can be exploited.

Chapter 5: Security Architecture and Design

2

The following sections outline the different types of memory that can be used with-
in computer systems.

Random Access Memory

Random access memory (RAM) is a type of temporary storage facility where data and
program instructions can temporarily be held and altered. It is used for read/write ac-
tivities by the operating system and applications. It is described as volatile because if
the computer’s power supply is terminated, then all information within this type of
memory is lost.

RAM is an integrated circuit made up of millions of transistors and capacitors. The
capacitor is where the actual charge is stored, which represents a 1 or 0 to the system.
The transistor acts like a gate or a switch. A capacitor that is storing a binary value of 1
has several electrons stored in it, which have a negative charge, whereas a capacitor that
is storing a 0 value is empty. When the operating system writes over a 1 bit with a 0 bit,
in reality it is just emptying out the electrons from that specific capacitor.

One problem is that these capacitors cannot keep their charge for long. Therefore, a
memory controller has to “recharge” the values in the capacitors, which just means it
continually reads and writes the same values to the capacitors. If the memory controller
does not “refresh” the value of 1, the capacitor will start losing its electrons and become
a 0 or a corrupted value. This explains how dynamic RAM (DRAM) works. The data be-
ing held in the RAM memory cells must be continually and dynamically refreshed so
your bits do not magically disappear. This activity of constantly refreshing takes time,
which is why DRAM is slower than static RAM.

NOTE When we are dealing with memory activities, we use a time metric
of nanoseconds (ns), which is a billionth of a second. So if you look at your
RAM chip and it states 70 ns, this means it takes 70 nanoseconds to read and
refresh each memory cell.

Static RAM (SRAM) does not require this continuous-refreshing nonsense; it uses a
different technology, by holding bits in its memory cells without the use of capacitors,
but it does require more transistors than DRAM. Since SRAM does not need to be re-
freshed, it is faster than DRAM, but because SRAM requires more transistors, it takes up
more space on the RAM chip. Manufacturers cannot fit as many SRAM memory cells on
a memory chip as they can DRAM memory cells, which is why SRAM is more expensive.
So, DRAM is cheaper and slower, and SRAM is more expensive and faster. It always
seems to go that way. SRAM has been used in cache, and DRAM is commonly used in
RAM chips.

Hardware Segmentation

Systems of a higher trust level may need to implement hardware segmentation of
the memory used by different processes. This means memory is separated physi-
cally instead of just logically. This adds another layer of protection to ensure that
a lower-privileged process does not access and modify a higher-level process’s
memory space.

CISSP All-in-One Exam Guide

1)

Because life is not confusing enough, we have many other types of RAM. The main
reason for the continual evolution of RAM types is that it directly affects the speed of the
computer itself. Many people, mistakenly, think that just because you have a fast proces-
sor, your computer will be fast. However, memory type and size and bus sizes are also
critical components. Think of memory as pieces of paper used by the system to hold
instructions. If the system had small pieces of papers (small amount of memory) to read
and write from, it would spend most of its time looking for these pieces and lining them
up properly. When a computer spends more time moving data from one small portion
of memory to another than actually processing the data, it is referred to as thrashing. This
causes the system to crawl in speed and your frustration level to increase.

The size of the data bus also makes a difference in system speed. You can think of a
data bus as a highway that connects different portions of the computer. If a ton of data
must go from memory to the CPU and can only travel over a four-lane highway, com-
pared to a 64-lane highway, there will be delays in processing. So the processor, mem-
ory type and amount, and bus speeds are critical components to system performance.

The following are additional types of RAM you should be familiar with:

e Synchronous DRAM (SDRAM) Synchronizes itself with the system’s CPU
and synchronizes signal input and output on the RAM chip. It coordinates its
activities with the CPU clock so the timing of the CPU and the timing of the
memory activities are synchronized. This increases the speed of transmitting
and executing data.

e Extended data out DRAM (EDO DRAM) Is faster than DRAM because
DRAM can access only one block of data at a time, whereas EDO DRAM can
capture the next block of data while the first block is being sent to the CPU for
processing. It has a type of “look ahead” feature that speeds up memory access.

e Burst EDO DRAM (BEDO DRAM) Works like (and builds upon) EDO
DRAM in that it can transmit data to the CPU as it carries out a read option,
but it can send more data at once (burst). It reads and sends up to four
memory addresses in a small number of clock cycles.

¢ Double data rate SDRAM (DDR SDRAM) Carries out read operations on the
rising and falling cycles of a clock pulse. So instead of carrying out one operation
per clock cycle, it carries out two and thus can deliver twice the throughput of
SDRAM. Basically, it doubles the speed of memory activities, when compared to
SDRAM, with a smaller number of clock cycles. Pretty groovy.

NOTE These different RAM types require different controller chips to
interface with them; therefore, the motherboards that these memory types
are used on often are very specific in nature.

Well, that's enough about RAM for now. Let’s look at other types of memory that are
used in basically every computer in the world.

Read-Only Memory
Read-only memory (ROM) is a nonvolatile memory type, meaning that when a comput-
er's power is turned off, the data are still held within the memory chips. When data are

Chapter 5: Security Architecture and Design

13

inserted into ROM memory chips, the data cannot be altered. Individual ROM chips are
manufactured with the stored program or routines designed into it. The software that is
stored within ROM is called firmware.

Programmable read-only memory (PROM) is a form of ROM that can be modified
after it has been manufactured. PROM can be programmed only one time because the
voltage that is used to write bits into the memory cells actually burns out the fuses that
connect the individual memory cells. The instructions are “burned into” PROM using
a specialized PROM programmer device.

Erasable and programmable read-only memory (EPROM) can be erased, modified,
and upgraded. EPROM holds data that can be electrically erased or written to. To erase
the data on the memory chip, you need your handy-dandy ultraviolet (UV) light device
that provides just the right level of energy. The EPROM chip has a quartz window,
which is where you point the UV light. Although playing with UV light devices can be
fun for the whole family, we have moved on to another type of ROM technology that
does not require this type of activity.

To erase an EPROM chip, you must remove the chip from the computer and wave
your magic UV wand, which erases all of the data on the chip—not just portions of it.
So someone invented electrically erasable programmable read-only memory (EEPROM),
and we all put our UV light wands away for good.

EEPROM is similar to EPROM, but its data storage can be erased and modified elec-
trically by onboard programming circuitry and signals. This activity erases only one
byte at a time, which is slow. And because we are an impatient society, yet another tech-
nology was developed that is very similar, but works more quickly.

Flash memory is a special type of memory that is used in digital cameras, BIOS
chips, memory cards for laptops, and video game consoles. It is a solid-state technolo-
gy, meaning it does not have moving parts and is used more as a type of hard drive than
memory.

Flash memory basically moves around different levels of voltages to indicate that a
1 or 0 must be held in a specific address. It acts as a ROM technology rather than a RAM
technology. (For example, you do not lose pictures stored on your memory stick in your
digital camera just because your camera loses power. RAM is volatile and ROM is non-
volatile.) When Flash memory needs to be erased and turned back to its original state,
a program initiates the internal circuits to apply an electric field. The erasing function
takes place in blocks or on the entire chip instead of erasing one byte at a time.

Flash memory is used as a small disk drive in most implementations. Its benefits
over a regular hard drive are that it is smaller, faster, and lighter. So let’s deploy Flash
memory everywhere and replace our hard drives! Maybe one day. Today it is relatively
expensive compared to regular hard drives.

References

¢ Unix/Linux Internals Course and Links www.softpanorama.org/Internals

e Linux Knowledge Base and Tutorial www.linux-tutorial.info/modules
.php?name=Tutorial&pageid=117

¢ Fast, Smart RAM, Peter Wayner, Byte.com (June 1995) www.byte.com/
art/9506/sec10/art2.htm

CISSP All-in-One Exam Guide

L

Cache Memory
I am going to need this later, so I will just stick it into cache for now.

Cache memory is a type of memory used for high-speed writing and reading activi-
ties. When the system assumes (through its programmatic logic) that it will need to
access specific information many times throughout its processing activities, it will store
the information in cache memory so it is easily and quickly accessible. Data in cache
can be accessed much more quickly than data stored in real memory. Therefore, any
information needed by the CPU very quickly, and very often, is usually stored in cache
memory, thereby improving the overall speed of the computer system.

An analogy is how the brain stores information it uses often. If one of Marge’s pri-
mary functions at her job is to order parts, which requires telling vendors the company’s
address, Marge stores this address information in a portion of her brain from which she
can easily and quickly access it. This information is held in a type of cache. If Marge was
asked to recall her third-grade teacher’s name, this information would not necessarily
be held in cache memory, but in a more long-term storage facility within her noggin.
The long-term storage within her brain is comparable to a system’s hard drive. It takes
more time to track down and return information from a hard drive than from special-
ized cache memory.

NOTE Different motherboards have different types of cache. Level | (LI) is
faster than Level 2 (L2),and L2 is faster than L3. Some processors and device
controllers have cache memory built into them. LI and L2 are usually built
into the processors and the controllers themselves.

Memory Mapping
Okay, here is your memory, here is my memory, and here is Bob’s memory. No one use each
other’s memory!

Because there are different types of memory holding different types of data, a com-
puter system does not want to let every user, process, and application access all types of
memory anytime they want to. Access to memory needs to be controlled to ensure data
do not get corrupted and that sensitive information is not available to unauthorized
processes. This type of control takes place through memory mapping and addressing.

The CPU is one of the most trusted components within a system, and can access
memory directly. It uses physical addresses instead of pointers (logical addresses) to
memory segments. The CPU has physical wires connecting it to the memory chips
within the computer. Because physical wires connect the two types of components,
physical addresses are used to represent the intersection between the wires and the
transistors on a memory chip. Software does not use physical addresses; instead, it em-
ploys logical memory addresses. Accessing memory indirectly provides an access con-
trol layer between the software and the memory, which is done for protection and
efficiency. Figure 5-8 illustrates how the CPU can access memory directly using physical
addresses and how software must use memory indirectly through a memory mapper.

Let's look at an analogy. You would like to talk to Mr. Marshall about possibly buy-
ing some acreage in Iowa. You don’t know Mr. Marshall personally, and you do not want
to give out your physical address and have him show up at your doorstep. Instead, you

Chapter 5: Security Architecture and Design

25

CPU
Data lines Address lines

Memory

Address
lines

< Application

A

Data
inputs

A

Memory
mapper |

Application

Memory

Address
lines

A

< Application

Data
inputs

A

Figure 5-8 The CPU and applications access memory differently.

would like to use a more abstract and controlled way of communicating, so you give Mr.
Marshall your phone number so you can talk to him about the land and determine
whether you want to meet him in person. The same type of thing happens in computers.
When a computer runs software, it does not want to expose itself unnecessarily to soft-
ware written by good and bad programmers. Computers enable software to access mem-
ory indirectly by using index tables and pointers, instead of giving them the right to
access the memory directly. This is one way the computer system protects itself.

When a program attempts to access memory, its access rights are verified and then
instructions and commands are carried out in a way to ensure that badly written code
does not affect other programs or the system itself. Applications, and their processes,
can only access the memory allocated to them, as shown in Figure 5-9. This type of
memory architecture provides protection and efficiency.

The physical memory addresses that the CPU uses are called absolute addresses. The
indexed memory addresses that software uses are referred to as logical addresses. And
relative addresses are based on a known address with an offset value applied. As ex-
plained previously, an application does not “know” it is sharing memory with other
applications. When the program needs a memory segment to work with, it tells the
memory manager how much memory it needs. The memory manager allocates this
much physical memory, which could have the physical addressing of 34,000 to 39,000,
for example. But the application is not written to call upon addresses in this numbering
scheme. It is most likely developed to call upon addresses starting with 0 and extending
to, let’s say, 5000. So the memory manager allows the application to use its own ad-

CISSP All-in-One Exam Guide

26

Memory Memory Memory

4 4 4

g g g g g g g g
o (%3 (v} % v % 1% 1%
2 e Y 2 e 2 e e
a o o o o a o o
A A 4 A 4 A A 4 A A 4 A 4

Application A Application B Application C

Figure 5-9 Applications, and the processes they use, access their own memory segments only.

dressing scheme—the logical addresses. When the application makes a call to one of
these “phantom” logical addresses, the memory manager must map this address to the
actual physical address. (It's like two people using their own naming scheme. When
Bob asks Diane for a ball, Diane knows he really means a stapler. Don't judge Bob and
Diane, it works for them.)

The mapping process is illustrated in Figure 5-10. When an application needs its
instructions and data processed by the CPU, the physical addresses are loaded into the
base and limit registers. When a thread indicates the instruction needs to be processed,
it provides a logical address. The memory manager maps the logical address to the
physical address, so the CPU knows where the instruction is located. The thread will
actually be using a relative address, because the application uses the address space of 0
to 5000. When the thread indicates it needs the instruction at the memory address
3400 to be executed, the memory manager has to work from its mapping of logical ad-
dress 0 to the actual physical address and then figure out the physical address for the
logical address 3400. So the logical address 3400 is relative to the starting address 0.

As an analogy, if I know you use a different number system than everyone else in the
world, and you tell me that you need 14 cookies, I would need to know where to start
in your number scheme to figure out how many cookies to really give you. So, if you
inform me that in “your world” your numbering scheme starts at 5, I would map 5 to
0 and know that the offset is a value of 5. So when you tell me you want 14 cookies (the
relative number), I take the offset value into consideration. I know that you start at the
value 5, so I map your logical address of 14 to the physical number of 8. (But I would

Chapter 5: Security Architecture and Design

Memory manager

Thread | 0

Absolute addresses

Logical address range 20
5000

24

1. 3400 2. 3.
Thread | ——» | ———»

Request address

28

32

I. Thread needs an instruction executed
and provides a logical address.

2. The request and address go to the memory
manager.

3. Memory manager maps the logical address
to an absolute address.

4. Absolute addresses are loaded into the
CPU’s registers.

Limit
register

Base
register

Figure 5-10 The CPU uses absolute addresses, and software uses logical addresses.

not give you 8 cookies, because you made me work too hard to figure all of this out. I
will just eat them myself.)

So the application is working in its “own world” using its “own addresses,” and the
memory manager has to map these values to reality, which means the absolute address
values.

Memory Leaks
Oh great, the memory leaked all over me. Does someone have a mop?

When an application makes a request for a memory segment, it is allocated a spe-
cific memory amount by the operating system. When the application is done with the
memory, it is supposed to tell the operating system to release the memory so it is avail-
able to other applications. This is only fair. But some applications are written poorly
and do not indicate to the system that this memory is no longer in use. If this happens
enough times, the operating system could become “starved” for memory, which would
drastically affect the system’s performance.

17

CISSP All-in-One Exam Guide

28

When a memory leak is identified in the hacker world, this opens the door to new
Denial-of-Service (DoS) attacks. For example, when it was uncovered that a Unix ap-
plication and a specific version of a Telnet protocol contained memory leaks, hackers
amplified the problem. They continually sent requests to systems with these vulnerabil-
ities. The systems would allocate resources for these network requests, which in turn
would cause more and more memory to be allocated and not returned. Eventually the
systems would run out of memory and freeze.

NOTE Memory leaks can be caused by operating systems, applications, and
software drivers.

Two main countermeasures can protect against memory leaks: developing better
code that releases memory properly, and using a garbage collector. A garbage collector is
software that runs an algorithm to identify unused committed memory and then tells
the operating system to mark that memory as “available.” Different types of garbage col-
lectors work with different operating systems, programming languages, and algorithms.

Virtual Memory

My RAM is overflowing! Can I use some of your hard drive space?
Response: No, I don't like you.

Secondary storage is considered nonvolatile storage media and includes such things
as the computer’s hard drive, floppy disks, or CD-ROMs. When RAM and secondary
storage are combined, the result is virtual memory. The system uses hard drive space to
extend its RAM memory space. Swap space is the reserved hard drive space used to ex-
tend RAM capabilities. Windows systems use the pagefile.sys file to reserve this space.
When a system fills up its volatile memory space, it writes data from memory onto the
hard drive. When a program requests access to this data, it is brought from the hard
drive back into memory in specific units, called page frames. This process is called pag-
ing. Accessing data kept in pages on the hard drive takes more time than accessing data
kept in memory because physical disk read/write access must take place. Internal con-
trol blocks, maintained by the operating system, keep track of what page frames are
residing in RAM, and what is available “offline,” ready to be called into RAM for execu-
tion or processing, if needed. The payoff is that it seems as though the system can hold
an incredible amount of information and program instructions in memory, as shown
in Figure 5-11.

A security issue with using virtual swap space is that when the system is shut down,
or processes that were using the swap space are terminated, the pointers to the pages are
reset to “available” even though the actual data written to disk is still physically there.
These data could conceivably be compromised and captured. On a very secure operat-
ing system, there are routines to wipe the swap spaces after a process is done with it,
before it is used again. The routines should also erase this data before a system shut-
down, at which time the operating system would no longer be able to maintain any
control over what happens on the hard drive surface.

Chapter 5: Security Architecture and Design

Main memory

Application I |. Application requests
S@@ access to memory.
4 2. Memory manager looks

up which segments are

2 allocated to that process.

3. Memory manager

\ 4 accesses memory frame
for process.

. Memory manager returns
data held in memory.

Page 4
table

page fe—re [TTT]

Swap space
Page Page
Page Page
Figure 5-11 Combining RAM and secondary storage to create virtual memory

NOTE If a program,file, or data are encrypted and saved on the hard drive,
it will be decrypted when used by the controlling program.While these
unencrypted data are sitting in RAM, the system could write out the data to
the swap space on the hard drive, in their unencrypted state. Attackers have
figured out how to gain access to this space in unauthorized manners.

References
¢ “Introduction to Virtual Memory,” by Tuncay Basar, Kyung Kim, and
Bill Lemley http://cs.gmu.edu/cne/itcore/virtualmemory/vmintro.html

e Memory Hierarchy http://courses.ece.uiuc.edu/ece411/lectures/
LecturesSpring05/Lectures_2.07.pdf

e “Virtual Memory,” by Prof. Bruce Jacob, University of Maryland at College
Park (2001) www.ee.umd.edu/~blj/papers/CS-chapter.pdf

e LabMice.net links to articles on memory leaks http://labmice.techtarget.com/
troubleshooting/memoryleaks.htm

29

CISSP All-in-One Exam Guide

30

CPU Modes and Protection Rings

If I am corrupted, very bad things can happen.
Response: Then you need to go into ring 0.

If an operating system is going to be stable, it must be able to protect itself from its
users and their applications. This requires the capability to distinguish between opera-
tions performed on behalf of the operating system itself and operations performed on
behalf of the users or applications. This can be complex because the operating system
software may be accessing memory segments, sending instructions to the CPU for pro-
cessing, and accessing secondary storage devices at the same time. Each user application
(e-mail client, antivirus program, web browser, word processor, personal firewall, and
so on) may also be attempting the same types of activities at the same time. The operat-
ing system must keep track of all of these events and ensure none of them violates the
system'’s overall security policy.

The operating system has several protection mechanisms to ensure processes do not
negatively affect each other or the critical components of the system itself. One has al-
ready been mentioned: memory protection. Another security mechanism the system
uses is protection rings. These rings provide strict boundaries and definitions for what the
processes that work within each ring can access and what operations they can success-
fully execute. The processes that operate within the inner rings have more privileges
than the processes operating in the outer rings, because the inner rings only permit the
most trusted components and processes to operate within them. Although operating
systems may vary in the number of protection rings they use, processes that execute
within the inner rings are usually referred to as existing in privileged, or supervisor,
mode. The processes working in the outer rings are said to execute in user mode.

NOTE The actual ring architecture used by a system is dictated by the
processor and the operating system.The hardware chip (processor) is
constructed to provide a certain number of rings, and the operating system
must be developed to also work in this ring structure.This is one reason why
an operating system platform may work with an Intel chip but not an Alpha
chip, for example. They have different architectures and ways to interpret
instruction sets.

Operating system components operate in a ring that gives them the most access to
memory locations, peripheral devices, system drivers, and sensitive configuration pa-
rameters. Because this ring provides much more dangerous access to critical resources,
it is the most protected. Applications usually operate in ring 3, which limits the type of
memory, peripheral device, and driver access activity and is controlled through the op-
erating system services or system calls. The different rings are illustrated in Figure 5-12.
The type of commands and instructions sent to the CPU from applications in the outer
rings are more restrictive in nature. If an application tries to send instructions to the
CPU that fall outside its permission level, the CPU treats this violation as an exception
and may show a general protection fault or exception error and attempt to shut down
the offending application.

Chapter 5: Security Architecture and Design

3

Figure 5-12
More trusted
processes operate
within lower-
numbered rings.

wieashs
dO

Bune?

Ring 0

Operating
system
kernel

soy|n

Operating
system

E-mail
client

Protection rings support the availability, integrity, and confidentiality requirements

of multitasking operating systems. The most commonly used architecture provides four
protection rings:

e Ring 0 Operating system kernel

e Ring1 Remaining parts of the operating system
e Ring2 1/O drivers and utilities

e Ring 3 Applications and user activity

These protection rings provide an intermediate layer between subjects and objects,
and are used for access control when a subject tries to access an object. The ring deter-
mines the access level to sensitive system resources. The lower the number, the greater
the amount of privilege given to the process that runs within that ring. Each subject and
object is logically assigned a number (0 through 3) depending upon the level of trust the
operating system assigns it. A subject in ring 3 cannot directly access an object in ring 1,
but subjects in ring 1 can directly access an object in ring 3. Entities can only access ob-
jects within their own ring and cannot directly communicate with objects in higher
rings. When an application needs access to components in rings it is not allowed to di-
rectly access, it makes a request of the operating system to perform the necessary tasks.
This is handled through system calls, where the operating system executes instructions
not allowed in user mode. The request is passed off to an operating system service, which
works at a higher privilege level and can carry out the more sensitive tasks.

CISSP All-in-One Exam Guide

32

When the operating system executes instructions for processes in rings 0 and 1, it
operates in supervisor mode or privileged mode. When the operating system executes
instructions for applications and processes in ring 3, it operates in user mode. User
mode provides a much more restrictive environment for the application to work in,
which in turn protects the system from misbehaving programs.

If CPU execution modes and protection rings are new to you, think of protection
rings as buckets. The operating system has to work within the structure and confines
provided by the CPU. The CPU provides the operating system with different buckets,
labeled 0 through 3. The operating system must logically place processes into the dif-
ferent buckets, based upon the trust level the operating system has in those processes.
Since the operating system kernel is the most trusted component, it and its processes go
into bucket 0. The remaining operating system processes go into bucket 1 and all user
applications go into bucket 3.

NOTE Many operating systems today do not use the second protection ring
very often, if at all.

So, when a process from bucket 0 needs its instructions to be executed by the CPU,
the CPU checks the bucket number (ring number) and flips a bit indicating that this
process can be fully trusted. This means this process can interact with all of the func-
tionality the CPU provides to processes. Some of the most privileged activities are I/O
and memory access attempts. When another process, this time from bucket 3, needs its
instructions processed by the CPU, the CPU first looks at what bucket this process came
from. Since this process is from bucket 3, the CPU knows the operating system has the
least amount of trust in this process and therefore flips a bit that restricts the amount of
functionality available to this process.

The CPU dictates how many buckets (rings) there are, and the operating system will
be developed to use either two or all of them.

Operating System Architecture

You can't see me and you don't know that I exist, so you can’t talk to me.
Response: Fine by me.

Operating systems can be developed by using several types of architecture. The ar-
chitecture is the framework that dictates how the operating system'’s services and func-
tions are placed and how they interact. This section looks at the monolithic, layered,
and client/server structures.

A monolithic operating system architecture is commonly referred to as “The Big Mess”
because of its lack of structure. The operating system is mainly made up of various
procedures that can call upon each other in a haphazard manner. In these types of
systems, modules of code can call upon each other as needed. The communication
between the different modules is not as structured and controlled as in a layered archi-
tecture, and data hiding is not provided. MS-DOS is an example of a monolithic oper-
ating system.

Chapter 5: Security Architecture and Design

33

A layered operating system architecture separates system functionality into hierarchi-
cal layers. For example, a system that followed a layered architecture was, strangely
enough, called THE. THE had five layers of functionality. Layer O controlled access to
the processor and provided multiprogramming functionality; layer 1 carried out mem-
ory management; layer 2 provided interprocess communication; layer 3 dealt with I/O
devices; and layer 4 was where the applications resided. The processes at the different
layers each had interfaces to be used by processes in layers below and above them.

This is different from a monolithic architecture, in which the different modules can
communicate with any other module. Layered operating systems provide data hiding,
which means that instructions and data (packaged up as procedures) at the various lay-
ers do not have direct access to the instructions and data at any other layers. Each pro-
cedure at each layer has access only to its own data and a set of functions that it requires
to carry out its own tasks. If a procedure can access more procedures than it really
needs, this opens the door for more successful compromises. For example, if an at-
tacker is able to compromise and gain control of one procedure, and this procedure has
direct access to all other procedures, the attacker could compromise a more privileged
procedure and carry out more devastating activities.

A monolithic operating system provides only one layer of security. In a layered sys-
tem, each layer should provide its own security and access control. If one layer contains
the necessary security mechanisms to make security decisions for all the other layers, then
that one layer knows too much about (and has access to) too many objects at the differ-
ent layers. This directly violates the data-hiding concept. Modularizing software and its
code increases the assurance level of the system, because if one module is compromised,
it does not mean all other modules are now vulnerable. Examples of layered operat-
ing systems are THE, VAX/VMS, Multics, and Unix (although THE and Multics are no
longer in use).

NOTE Do not confuse client/server operating system architecture with
client/server network architecture, which is the traditional association for
“client/server.” In a network, an application works in a client/server model
because it provides distributed computing capabilities. The client portion of
the application resides on the workstations and the server portion is usually
a back-end database or server.

Another approach to system design works within a client/server architecture, which
means that portions of software and functionality that were previously in the mono-
lithic kernel are now at the higher levels of the operating system. The operating system
functions are divided into several different processes that run in user mode, instead of
kernel mode.

The goal of a client/server architecture is to move as much code as possible from
having to work in kernel mode (privileged mode) so the system has a leaner kernel,
referred to as the microkernel. In this model, the requesting process is referred to as the
client, and the process that fulfills the request is called the server. The server processes
can be file system server, memory server, I/O server, or process server. These servers are
commonly called subsystems. The client is either a user process or another operating
system process.

CISSP All-in-One Exam Guide

34

Domains

Okay, here are all the marbles you can play with. We will call that your domain of resources.

A domain is defined as a set of objects that a subject is able to access. This domain
can be all the resources a user can access, all the files available to a program, the mem-
ory segments available to a process, or the services and processes available to an appli-
cation. A subject needs to be able to access and use objects (resources) to perform tasks,
and the domain defines which objects are available to the subject and which objects are
untouchable and therefore unusable by the subject.

NOTE Remember that a thread is a portion of a process.When the thread is
generated, it shares the same domain (resources) as its process.

These domains have to be identified, separated, and strictly enforced. An operating
system and CPU works in either privileged mode or user mode. The reason to even use
these different modes, which are dictated by the protection ring, is to define different
domains. When a process’s instructions are being executed in privileged mode, the pro-
cess has a much larger domain to work with (or more resources to access); thus, it can
carry out more activities. When an operating system process works in privileged mode, it
can access more memory segments, transfer data from an unprotected domain to a pro-
tected domain, and directly access and communicate with hardware devices. An applica-
tion that functions in user mode cannot access memory directly and has a more limited
amount of resources available to it. Only a certain segment of memory is available to this
application, and that segment must be accessed in an indirect and controlled fashion.

A process that resides in a privileged domain needs to be able to execute its instruc-
tions and process its data with the assurance that programs in a different domain cannot
negatively affect its environment. This is referred to as an execution domain. Because
processes in a privileged domain have access to sensitive resources, the environment
must be protected from rogue program code or unexpected activities resulting from pro-
grams in other domains. Some systems may only have distinct user and privilege areas,
whereas other systems may have complex architectures that contain up to ten execution
domains.

An execution domain has a direct correlation to the protection ring that a subject or
object is assigned to. The lower the protection ring number, the higher the privilege and
the larger the domain. This concept is depicted in Figure 5-13.

Layering and Data Hiding

Although, academically, there are three main types of architectures for operating sys-
tems, the terms layering and data hiding are commonly used when talking about pro-
tection mechanisms for operating systems—even ones that follow the client/server ar-
chitecture, because it also uses layering and data hiding to protect itself.

A layered operating system architecture mainly addresses how functionality is laid
out and is available to the users and programs. It provides its functionality in a hierar-
chy, whereas a client/server architecture provides functionality in more of a linear fash-

Chapter 5: Security Architecture and Design

35

Ring 3

Ring 2

Ring |

Ring 0

Security domain of
resources

Security domain of
resources

Security domain of
resources

Security domain of
resources

Figure 5-13 The higher the level of trust, the larger the number of available resources.

ion. A request does not have to go through various layers in a client/server architecture.
The request just goes to the necessary subsystem. But in terms of security, both architec-
tures use layer and data hiding to protect the critical operating system processes from
applications, and applications from other applications.

It is almost too bad that we have so many terms—execution domains, protection
rings, layering, data hiding, protection domains, CPU modes, and so on—because in
reality they all are different ways to describe the same thing that takes place within ev-
ery operating system today. When people are first learning these topics, many of these
concepts seem discrete and totally unrelated. But in reality, these concepts have to work
together in a very orchestrated manner for the whole operating system to work and
provide the level of protection it does.

CISSP All-in-One Exam Guide

36

As previously discussed, the operating system and CPU work within the same archi-
tecture, which provides protection rings. A process’s protection domain (execution do-
main) is determined by the protection ring that it resides within. When a process needs
the CPU to execute instructions, the CPU works in a specific mode (user or privileged)
depending upon what protection ring the process is in. Layering and data hiding are
provided by placing the different processes in different protection rings and controlling
how communication takes place from the less trusted and the more trusted processes.

So, layering is a way to provide buffers between the more trusted and less trusted
processes. The less trusted processes cannot directly communicate with the more trust-
ed processes, but rather must submit their requests to an operating system service. This
service acts as a broker or a bouncer that makes sure nothing gains unauthorized access
to the more trusted processes. This architecture protects the operating system overall,
including all the applications and user activities going on within it.

The Evolution of Terminology

Although academically monolithic, layered, and client/server architectures describe how
an operating system is constructed, these terms have morphed to describe mainly how
the kernel is built. What this means is that in the industry, and on the CISSP exam,
when you see the term “monolithic system,” it is actually referring to the fact that all of
the code that makes up the kernel runs in kernel (privileged mode). So the confusing
piece is that there is actually an operating system framework called a monolithic frame-
work and there is a specific term that applies only to the kernel (monolithic kernel)—
but today these terms have merged. Whenever the term “monolithic system” is used
today, it refers to how the kernel is built.

NOTE Remember that kernel mode, privileged mode, and supervisory mode
all mean the same thing.

A monolithic kernel means all of the kernel’s activity works in privileged (supervisory)
mode, as illustrated in Figure 5-14. This means the operating system'’s functionality (pro-
cess, file, memory, I[/O management, and more) work in ring 0 of the protection rings we
discussed earlier. Windows NT, 2000, and Vista are all considered monolithic systems
because all of their operating services execute in kernel mode. On one hand, this causes a
security risk, because if one process within the kernel fails, it can affect the whole kernel.
It also means that with more code running in this privilege mode, more code can be ex-
ploited by attackers, giving them a high level of control of the system. This means that
creating a secure monolithic system is complex and it is more difficult to ensure security.

The reason Windows operating systems (and Unix and Linux) have been developed
to use a monolithic kernel is because of performance. When some kernel components
run in user mode and others in kernel mode, it takes a lot longer for the CPU to carry
out its execution of instructions because of the changing from user mode to kernel
mode and back again.

What this means is that most of the operating systems we work with today mainly
use ring 0 and ring 3 of the protection ring architecture described in a previous section.

Chapter 5: Security Architecture and Design

Application e o o Application
User mode
v v Kernel mode
System services
4 A A
h 4 A 4
d
al
7} \ 7}
4 4 4
gl |- al |-
-
Operating
system
procedures
h 4 A 4 h 4
L Hardware :_
hl

Figure 5-14 Subsystems fulfill the requests of the client processes.

All of the kernel and device drivers are in ring 0 and all user applications are in ring 3.
Since drivers run in this privileged mode, it is important the drivers be written properly
and not be malicious in any way. Since many device drivers are provided by third par-
ties, it is hard to know if they are developed properly and securely. This is why Microsoft
created much stricter requirements for drivers in its operating system Vista. Third-party
vendors that write drivers must now meet much more stringent criteria before the op-
erating system will allow them to load.

Virtual Machines

I would like my own simulated environment so I can have my own world.
Response: No problem. Just slip on this straightjacket first.

If you have been into computers for a while, you might remember computer games
that did not have the complex, life-like graphics of today’s games. Pong and Asteroids
were what we had to play with when we were younger. In those simpler times, the
games were 16-bit and were written to work in a 16-bit MS-DOS environment. When
our Windows operating systems moved from 16-bit to 32-bit, the 32-bit operating sys-
tems were written to be backward compatible, so someone could still load and play a
16-bit game in an environment that the game did not understand. The continuation of
this little life pleasure was available to users because the operating systems created vir-
tual machines for the games to run in.

A virtual machine is a simulated environment. When a 16-bit application needs to
interact with the operating system, it has been developed to make system calls and interact

31

CISSP All-in-One Exam Guide

38

Breaking It Down for the Exam
The following statements summarize many of the critical concepts you need to
understand:

e Layering and data hiding provide protection to data and processes by
implementing layers of abstraction. Access to sensitive processes and
data can only take place through properly formatted requests that are
sent to system APIs. This means the communication that takes place
between the different layers of trust only happens through well-defined
interfaces. Creating and maintaining these different layers helps protect
data from other processes that are not authorized to access it.

e [fa process does not have an interface with which to communicate to
another process at another layer, it cannot have access to its data.

e The protection ring architecture allows for processes to either run in
kernel or user mode.

e DProcesses with a higher trust level (works in a lower number protection
ring) have a larger domain than processes with lower trust levels.

e Execution (protection) domains allow for the isolation of process
activity, which provides protection and system stability.

e Monolithic systems have all kernel activities running in supervisory mode,
while microkernels have only a small subset of kernel activities running in
this privileged mode. All other kernel activities run in user mode.

with the computer’s memory in a way that would only work within a 16-bit operating
system—not a 32-bit system. So, the virtual machine simulates a 16-bit operating system,
and when the application makes a request, the operating system converts the 16-bit re-
quest into a 32-bit request (this is called thunking) and reacts to the request appropriately.
When the system sends a reply to this request, it changes the 32-bit reply into a 16-bit reply
so the application understands it.

Although not many people run 16-bit games anymore, we do use virtual machines
for other purposes. The product VMWare creates individual virtual machines so a user
can run multiple operating systems on one computer at the same time. The Java Virtual
Machine (JVM), used by basically every web browser today, creates virtual machines
(called sandboxes) in which Java applets run. This is a protection mechanism, because
the sandbox contains the applet and does not allow it to interact with the operating
system and file system directly. The activities that the applet attempts to carry out are
screened by the JVM to see if they are safe requests. If the JVM determines an activity is
safe, then the JVM carries out the request on behalf of the applet.

NOTE Malware has been written that escapes the “walls of the sandbox”
so it can carry out its deeds without being under control of the JVM.These
compromises, as well as Java and the JVM, will be covered in more detail in
Chapter I 1.

Chapter 5: Security Architecture and Design

References

e The Design of PARAS Microkernel, Chapter 2, “Operating System Models,”
by Rajkumar Buyya (1998) www.gridbus.org/~raj/microkernel/chap2.pdf

e Chapter 12, “Windows NT/2000,” by M.I. Vuskovic http://medusa.sdsu.edu/
cs570/Lectures/chapter12.pdf

¢ Answers.com definitions of virtual machine www.answers.com/topic/
virtual-machine

Additional Storage Devices

Besides the memory environment discussed previously, many types of physical storage
devices should be covered, along with the ramifications of security compromises that
could affect them. Many, if not all, of the various storage devices used today enable the
theft or compromise of data in an organization. As their sizes have shrank, their ca-
pacities have grown. Floppy disks, while small in relative storage capacity (about
1.44MB of data), have long been known to be a source of viruses and data theft. A thief
who has physical access to a computer with an insecure operating system can use a
basic floppy disk to boot the system.

Many PCs and Unix workstations have a BIOS that allows the machine to be booted
from devices other than the floppy disk, such as a CD-ROM or even a USB thumb drive.
Possible ways to harden the environment include password-protecting the BIOS, so
that a nonapproved medium cannot take over the machine, and controlling access to
the physical environment of the computer equipment.

In many instances, removable storage units have unfortunately come up missing,
Two noteworthy incidents occurred in July 2004, at which time both Los Alamos Na-
tional Laboratory and Sandia National Laboratories reported lost storage media contain-
ing classified information. This raised enough of a concern at Los Alamos that the military
research facility was totally shut down, with no employees allowed to enter, while a thor-
ough search and investigation was performed. Sandia National Laboratories reported it
was missing a computer floppy disk marked classified, which it later located.

Rewritable CD/DVDs, mini-disks, optical disks—virtually any portable storage me-
dium—can be used to compromise security. Current technology headaches for the se-
curity professional include USB thumb drives and USB-attachable MP3 players capable
of storing multiple gigabytes of data. The first step in prevention is to update existing
security policies (or implement new ones) to include the new technologies. Even cel-
lular phones can be connected to computer ports for data, sound, image, and video
transmission that could be out of bounds of an outdated security policy. Technologies
such as Bluetooth, FireWire, and Blackberry all have to be taken into account when ad-
dressing security concerns and vulnerabilities.

Input/Output Device Management

Some things come in, some things go out.
Response: We took a vote and would like you to go out.

We have covered a lot of operating system responsibilities up to now, and we are not
stopping yet. An operating system also has to control all input/output devices. It sends

39

CISSP All-in-One Exam Guide

40

commands to them, accepts their interrupts when they need to communicate with the
CPU, and provides an interface between the devices and the applications.

I/O devices are usually considered block or character devices. A block device works
with data in fixed-size blocks, each block with its own unique address. A disk drive is
an example of a block device. A character device, such as a printer, network interface
card, or mouse, works with streams of characters, without using any fixed sizes. This
type of data is not addressable.

When a user chooses to print a document, open a stored file on a word processor,
or save files to a jump drive, these requests go from the application the user is working
in, through the operating system, and to the device requested. The operating system
uses a device driver to communicate with a device controller, which may be a circuit
card that fits into an expansion slot. The controller is an electrical component with its
own software that provides a communication path that enables the device and operat-
ing system to exchange data. The operating system sends commands to the device con-
troller’s registers and the controller then writes data to the peripheral device or extracts
data to be processed by the CPU, depending on the given commands. If the command
is to extract data from the hard drive, the controller takes the bits and puts them into
the necessary block size and carries out a checksum activity to verify the integrity of the
data. If the integrity is successfully verified, the data are put into memory for the CPU
to interact with.

Operating systems need to access and release devices and computer resources prop-
erly. Different operating systems handle accessing devices and resources differently. For
example, Windows NT is considered a stabler and safer data processing environment
than Windows 9x because applications in Windows NT cannot make direct requests to
hardware devices. Windows NT and Windows 2000 have a much more controlled
method of accessing devices than Windows 9x. This method helps protect the system
from badly written code that does not properly request and release resources. Such a
level of protection helps ensure the resources’ integrity and availability.

Interrupts

When an I/O device has completed whatever task was asked of it, it needs to inform the
CPU that the necessary data are now in memory for processing. The device’s controller
sends a signal down a bus, which is detected by the interrupt controller. (This is what it
means to use an interrupt. The device signals the interrupt controller and is basically
saying, “I am done and need attention now.”) If the CPU is busy and the device’s inter-

Why Does My Video Card Need to Have Its Own RAM?

The RAM on a video card is really just a type of buffer. The application or operat-
ing system writes the pixel values into this RAM space instead of writing to the
system’s RAM. The pixel values are then displayed to the user on the monitor
screen. Graphic-intensive games work better with video cards with a lot of RAM,
because storing this display information on the system’s RAM takes too long for
the read and write procedures. This results in delayed reactions between the user’s
interaction commands and what is displayed on the screen. We never seemed to
have these problems when we all played Pong.

Chapter 5: Security Architecture and Design

4

rupt is not a higher priority than whatever job is being processed, then the device has
to wait. The interrupt controller sends a message to the CPU, indicating what device
needs attention. The operating system has a table (called the interrupt vector) of all the
I/O devices connected to it. The CPU compares the received number with the values
within the interrupt vector so it knows which 1/O device needs its services. The table has
the memory addresses of the different I/O devices. So when the CPU understands that
the hard drive needs attention, it looks in the table to find the correct memory address.
This is the new program counter value, which is the initial address of where the CPU
should start reading from.

One of the main goals of the operating system software that controls I/O activity is
to be device independent. This means a developer can write an application to read
(open a file) or write (save a file) to any device (floppy disk, jump drive, hard drive,
CD-ROM drive). This level of abstraction frees application developers from having to
write different procedures to interact with the various I/O devices. If a developer had to
write an individual procedure of how to write to a CD-ROM drive, and how to write to
a floppy disk, and how to write to a jump drive, and how to write to a hard disk, and so
on, each time a new type of I/O device was developed, all of the applications would
have to be patched or upgraded.

Operating systems can carry out software I/O procedures in various ways. We will
look at the following methods:

e Programmed I/O

e Interrupt-driven I/O
e [/O using DMA

e Premapped I/O

e Fully mapped I/O

Programmable 1/O If an operating system is using programmable I/O, this means
the CPU sends data to an I/O device and polls the device to see if it is ready to accept
more data. If the device is not ready to accept more data, the CPU wastes time by wait-
ing for the device to become ready. For example, the CPU would send a byte of data (a
character) to the printer and then ask the printer if it is ready for another byte. The CPU
sends the text to be printed one byte at a time. This is a very slow way of working and
wastes precious CPU time. So the smart people figured out a better way: interrupt-
driven 1/0O.

Interrupt-Driven 1/O If an operating system is using interrupt-driven 1/O, this
means the CPU sends a character over to the printer and then goes and works on an-
other process’s request. When the printer is done printing the first character, it sends an
interrupt to the CPU. The CPU stops what it is doing, sends another character to the
printer, and moves to another job. This process (send character—go do something
else—interrupt—send another character) continues until the whole text is printed. Al-
though the CPU is not waiting for each byte to be printed, this method does waste a lot
of time dealing with all the interrupts. So we excused those smart people and brought
in some smarter people, who came up with I/O using DMA.

CISSP All-in-One Exam Guide

4

1/0 Using DMA Direct memory access (DMA) is a way of transferring data between
I/O devices and the system’s memory without using the CPU. This speeds up data trans-
fer rates significantly. When used in I/O activities, the DMA controller feeds the charac-
ters to the printer without bothering the CPU. This method is sometimes referred to as
unmapped 1/O.

Premapped 1/O Premapped I/O and fully mapped I/O (described next) do not
pertain to performance, as do the earlier methods, but provide two approaches that can
directly affect security. In a premapped I/O system, the CPU sends the physical memory
address of the requesting process to the I/O device, and the I/O device is trusted enough
to interact with the contents of memory directly. So the CPU does not control the inter-
actions between the I/O device and memory. The operating system trusts the device to
behave properly. Scary.

Fully Mapped 1/O Under fully mapped 1/O, the operating system does not fully
trust the I/O device. The physical address is not given to the I/O device. Instead, the
device works purely with logical addresses and works on behalf (under the security
context) of the requesting process. So the operating system does not trust the device to
interact with memory directly. The operating system does not trust the process or device
and acts as the broker to control how they communicate with each other.

References

e Chapter 12, “I/0 Management and Disk Scheduling,” by Joseph
Kee-Yin www.comp.hkbu.edu.hk/~jng/comp2320/2320-C11.ppt

e Introduction to Operating Systems, by B. Ramamurthy (1/25/2002)
www.cse.buffalo.edu/faculty/bina/cse421/spring02/jan25.pdf

Beam Me Up, Scotty!

A cofounder of Intel, Gordon Moore came up with Moore’s Law, which states that
the number of electronic components (transistors, capacitors, diodes) will dou-
ble every 18 months. No one really paid attention to this until it came to be true
every 18 months or so. Now he’s right up there with Nostradamus.

So chip makers have continually put an amazing amount of stuff on one tiny
piece of silicon, but we will soon hit the wall and have to look for other types of
technologies. Today, people are looking at quantum physics to make up tomor-
row’s processor. In quantum physics, particles are not restricted to holding just
two states (1 or 0), but instead can hold these states simultaneously and other
states in between. Freaky.

And other individuals are looking to our own personal DNA, which holds the
instructions for our bodies. There have already been experiments in which DNA
was used for computation processes. It can carry out complex computations in
parallel instead of serially like today’s processors. But it sounds kind of gross.

You won't find a quantum or DNA computer at Best Buy any time soon, but
one day maybe.

Chapter 5: Security Architecture and Design

43

System Architecture

Designing a system from the ground up is a complicated task with many intricate and
abstract goals that must be achieved through mathematics, logic, design, programming
code, and implementation. Fundamental design decisions must be made when con-
structing a system. Security is only one goal of a system, but it is the goal security profes-
sionals are most concerned about.

Availability, integrity, and confidentiality can be enforced at different places within
an enterprise. For example, a company may store customer credit card information in a
database that many users can access. This information, obviously, requires protection
to ensure it is not accessed or modified in an unauthorized manner. We should start
with general questions and gradually drill down into the details. Where should this
protection be placed? Should there be access controls that screen users when they log
in and assign them their rights at that point, dictating which data they can and cannot
access? Should the data files holding the credit card information be protected at the file
system level? Should protection be provided by restricting users’ operations and activi-
ties? Or should there be a combination of all of these? The first and most general ques-
tion is, “Where should the protection take place: at the user’s end, where the data are
stored, or by restricting user activities within the environment?” This is illustrated in
Figure 5-15.

The same type of questions have to be answered when building an operating sys-
tem. Once these general questions have been answered, the placement of the mecha-
nisms needs to be addressed. Security mechanisms can be placed at the hardware,
kernel, operating system, services, or program layers. At which layer(s) should security
mechanisms be implemented? If protection is implemented at the hardware layer, then
a broad level of protection is provided, because it provides a baseline of security for all
the components that work on top of the hardware layer. If the protection mechanisms
are closer to the user (in the higher levels of the operating system architecture), the se-
curity is more detail-oriented and focused than mechanisms that work at the lower
levels of the architecture.

No matter where the security mechanism is placed within the operating system ar-
chitecture, the more complex the security mechanism becomes, the less assurance it
usually provides. The reason is that greater complexity of the mechanism demands more
technical understanding from the individuals who install, test, maintain, and use it. The
more complex the security mechanism, the harder it is to fully test it under all possible
conditions. On the other hand, simplistic mechanisms may not be able to provide the

3. Protection can control the
operations between the user

and the data.

1. Protection can happen 2. Protection can happen
at the user’s end. at the data’s end.

Figure 5-15 Security can take place in three main areas.

CISSP All-in-One Exam Guide

&4

desired richness of functionality and options, although they are easier to install, main-
tain, use, and test. So the trade-offs between functionality and assurance must be fully
understood to make the right security mechanism choices when designing a system.

Once the designers have an idea of what the security mechanisms should focus on
(users, operations, or data), what layer(s) the mechanisms should be placed at (hard-
ware, kernel, operating system, services, or program), and how complex each mecha-
nism is, they need to build and integrate the mechanisms in such a way that they have
a proper relationship with other parts of the system.

First, the design team needs to decide what system mechanisms to trust and place in
protection ring 0. Then, the team must specify how these modules of code can interact
in a secure manner. Although it might seem that you would want to trust all the compo-
nents within the system, this would cause too much overhead, complexity, and perfor-
mance bottlenecks. For a mechanism to be trusted, it must perform in a predictable and
secure manner and not adversely affect other trusted or untrusted mechanisms. In re-
turn, these trusted components have access to more privileged services, have direct ac-
cess to memory, usually have higher priority when requesting CPU processing time, and
have more control over system resources. So the trusted subjects and objects need to be
identified and distinguished from the untrusted ones and placed into defined subsets.

Defined Subsets of Subjects and Objects

I totally trust you. You can do whatever you want.
Response: I want to leave.

As stated previously, not all components need to be trusted and therefore not all
components fall within the trusted computing base (TCB). The TCB is defined as the
total combination of protection mechanisms within a computer system. The TCB in-
cludes hardware, software, and firmware. These are part of the TCB because the system
is sure these components will enforce the security policy and not violate it.

The components that do fall within the TCB need to be identified and their ac-
cepted capabilities need to be defined. For example, a system that does not require a
high level of trust may permit all authenticated users to access and modify all files on
the computer. This subset of subjects and objects is large and the relationship between
them is loose and relaxed. A system that requires a higher level of trust may permit only
two subjects to access all files on a computer system, and permit only one of those sub-
jects to actually modify all the files. This subset is much smaller and the rules being
enforced are more stringent and detailed.

Security Architecture

The security architecture is one component of a product’s overall architecture and
is developed to provide guidance during the design of the product. It should out-
line the level of assurance required and the potential impacts this level of security
could have during the development stages and on the product overall. As the
software development project moves from architecture, to design, to specifica-
tions, and then code development, the security architecture and requirements
become more granular with each step.

Chapter 5: Security Architecture and Design

45

If developers want to develop a system that achieves an Orange Book assurance rat-
ing of D (very low), then what makes up the TCB is not much of an issue because the
system will not be expected to provide a very high level of security. However, if the de-
velopers want to develop a system with an Orange Book rating of B2 or B1 (much
higher than rating D), they will need to ensure that all components of the TCB carry out
their tasks properly. These TCB components need to enforce strict rules that dictate how
subjects and objects interact. The developers also need to ensure these components are
identified, audited, and react in a predictable manner, because these are the compo-
nents that will be scrutinized, tested, and evaluated before a rating of B2 or B1 can be
given. (The Orange Book is an evaluation criterion and is addressed in the section “The
Orange Book” later in the chapter.)

Trusted Computing Base

The term “trusted computing base,” which originated from the Orange Book, does not
address the level of security a system provides, but rather the level of trust a system pro-
vides, albeit in a security sense. This is because no computer system can be totally se-
cure. The types of attacks and vulnerabilities change and evolve over time, and with
enough time and resources, most attacks become successful. However, if a system meets
a certain criteria, it is looked upon as providing a certain level of trust, meaning it will
react predictably in different types of situations.

The TCB does not address only operating system components, because a computer
system is not made up of only an operating system. The TCB addresses hardware, software
components, and firmware. Each can affect the computer’s environment in a negative or
positive manner, and each has a responsibility to support and enforce the security policy
of that particular system. Some components and mechanisms have direct responsibilities
in supporting the security policy, such as firmware that will not let a user boot a computer
from a floppy disk, or the memory manager that will not let processes overwrite other
processes’ data. Then there are components that do not enforce the security policy but
must behave properly and not violate the trust of a system. Examples of the ways in which
a component could violate the system’s security policy include an application that at-
tempts to make a direct call to a piece of hardware instead of using the proper system calls
through the operating system, a program that attempts to read data outside of its approved
memory space, or a piece of software that does not properly release resources after use.

A TCB is usually a very abstract concept for people who are not system designers,
and many books or papers do not make it any easier to fully understand what this term
means. If an operating system is using a TCB, this means the system has a hardened
kernel that compartmentalizes system processes. The kernel is made up of hardware,
software, and firmware, so in a sense the kernel is the TCB. But the TCB can include
other components, such as trusted commands, programs, and configuration files that
can directly interact with the kernel. For example, when installing a Unix system, the
administrator can choose to install the TCB during the setup procedure. If the TCB is
enabled, then the system has a trusted path, a trusted shell, and system integrity—check-
ing capabilities. A trusted path is a communication channel between the user, or pro-
gram, and the kernel. The TCB provides protection resources to ensure this channel
cannot be compromised in any way. A trusted shell means that someone who is work-
ing in that shell cannot “bust out of it,” and other processes cannot “bust into it.”

CISSP All-in-One Exam Guide

46

Several Unix commands are part of the TCB, such as setuid (set process ID) and
setguid (set process group ID). Only a privileged user, as in root, should be able to
change process ID information.

Earlier operating systems (MS-DOS, Windows 3.11, and Novell Netware release 3,
for example) did not have TCBs. Windows 95 has a TCB, but it can be used only while
working in 32-bit mode. Windows NT was the first version of Windows that truly incor-
porated the idea of a TCB. Microsoft is using the words “Trustworthy Computing” a lot,
but this is not just a Microsoft concept. Several vendors came together to develop a bet-
ter TCB by agreeing to improve methods on how to protect software from being com-
promised. Microsoft is just the first vendor to implement it, in its Windows 2003
product. Microsoft is basically building upon its current TCB and calling it the Next-
Generation Secure Computing Base (NGSCB). (It must be better. It has a longer name!)
And Microsoft renamed its security kernel “nexus.” How NGSCB actually works is be-
yond the scope of this book and the exam, but basically the operating system is doing
what it is supposed to be doing, only better—better isolation between trusted and un-
trusted processes, better memory management, more secure /O operations, and better
software authentication mechanisms. So we are all one step closer to more secure sys-
tems and world peace.

NOTE To understand Microsoft’s Vista kernel, visit www.microsoft.com/
technet/technetmag/issues/2007/02/VistaKernel.

Every operating system has specific components that would cause the system grave
danger if they were compromised. The TCB provides extra layers of protection around
these mechanisms to help ensure they are not compromised, so the system will always
run in a safe and predictable manner.

How does the TCB do its magic? The processes within the TCB are the components
that protect the system overall. So the developers of the operating system must make
sure these processes have their own execution domain. This means they reside in ring 0,
their instructions are executed in privileged state, and no less trusted processes can di-
rectly interact with them. The developers need to ensure the operating system main-
tains an isolated execution domain, so their processes cannot be compromised or
tampered with. The resources that the TCB processes use must also be isolated, so tight
access control can be provided and all access requests and operations can be properly
audited. So basically, the operating system tells all the other processes they cannot play
with the TCB processes and that they cannot play with the TCB’s resources.

The four basic functions of the TCB are process activation, execution domain switch-
ing, memory protection, and I/O operations. We have really covered all of these things
already throughout previous sections without using this exact terminology, so here’s a
recap. Process activation deals with the activities that must take place when a process is
going to have its instructions and data processed by the CPU. As described earlier, the
CPU fills its registers with information about the requesting process (program counter,
base and limit addresses, user or privileged mode, and so on). A process is “activated”
when its interrupt is called upon, enabling it to interact with the CPU. A process is “de-

Chapter 5: Security Architecture and Design

activated” when its instructions are completely executed by the CPU or when another
process with a higher priority calls upon the CPU. When a process is deactivated, the
CPU'’s registers must be filled with new information about the new requesting process.
The data that is getting switched in and out of the registers may be sensitive in nature,
so the TCB components must make sure all of this is taking place securely.

For an analogy, suppose that five people all want to ask your advice at the same
time. There is only one of you, so each person has a certain amount of time that they
can spend with you. Person 1 gives you her papers, so you can read through them and
figure out her problem in order to give her a proper answer. As you are reading Person
1’s papers, Person 2 comes barging into the room claiming he has an emergency. As a
result, you put Person 1's papers down on your desk and start reading Person 2’s papers
to figure out his problem. Eventually, you have five people around you, and you can
only spend five seconds with each of them at a time. As you talk to one individual, you
must grab the right file from your desk. These files have sensitive information, so you
have to make sure to keep all the files straight and make sure these people cannot read
one another’s files. This is what the TCB and the CPU are doing as they are dealing with
several different process requests at one time. Instead of reading stacks of paper, the
CPU reads instructions and data on a memory segment stack.

Execution domain switching takes place when a process needs to call upon a process
in a higher protection ring. As explained earlier, less trusted processes run in user mode
and cannot carry out activities such as communicating with hardware or directly send-
ing requests to the kernel. Therefore, a process running in user mode (ring 3) must
make a request to an operating system service, which works in ring 1. The less trusted
process will have its information loaded into the CPU'’s registers and then when the
CPU sees that an operating system service has been called, it switches domains and se-
curity context. This means the information of the operating system service process is
loaded into the CPU's registers and the CPU carries out those instructions in privileged
mode. So, execution domain switching refers to when the CPU has to go from execut-
ing instructions in user mode to privileged mode and back. All of this must happen
properly or a less trusted process might be executed in privileged mode and have direct
access to system resources.

Memory protection and I/O operations have been discussed in previous sections,
so just realize that these operations are the responsibility of the components within
the TCB.

The TCB is responsible for carrying out the TCB memory protection and I/O operations
securely. It does this by compartmentalizing these activities into discrete units, which are
the processes that make up the kernel. This ensures that if a kernel process is compro-
mised, it does not mean all the processes are now under the control of the attacker.

Not every part of a system needs to be trusted. Part of evaluating the trust level of a
system is to identify the architecture, security services, and assurance mechanisms that
make up the TCB. During the evaluation process, the tests must show how the TCB is
protected from accidental or intentional tampering and compromising activity. For sys-
tems to achieve a higher trust level rating, they must meet well-defined TCB require-
ments, and the details of their operational states, developing stages, testing procedures,
and documentation will be reviewed with more granularity than systems attempting to
achieve a lower trust rating.

47

CISSP All-in-One Exam Guide

48

By using specific security criteria, trust can be built into a system, evaluated, and
certified. This approach can provide a measurement system for customers to use when
comparing one product to another. It also gives vendors guidelines on what expecta-
tions are put upon their systems and provides a common assurance rating metric so
when one group talks about a C2 rating, everyone else understands what that term
means.

The Orange Book is one of these evaluation criteria. It defines a trusted system as
hardware and software that utilize measures to protect unclassified or classified data for
a range of users without violating access rights and the security policy. It looks at all
protection mechanisms within a system that enforce the security policy and provide an
environment that will behave in a manner expected of it. This means each layer of the
system must trust the underlying layer to perform the expected functions, provide the
expected level of protection, and operate in an expected manner under many different
situations. When the operating system makes calls to hardware, it anticipates that data
will be returned in a specific data format and behave in a consistent and predictable
manner. Applications that run on top of the operating system expect to be able to make
certain system calls, receive the required data in return, and operate in a reliable and
dependable environment. Users expect the hardware, operating system, and applica-
tions to perform in particular fashions and provide a certain level of functionality. For
all of these actions to behave in such predicable manners, the requirements of a system
must be addressed in the planning stages of development, not afterwards.

Security Perimeter

Now, whom do we trust?
Response: Anyone inside the security perimeter.

As stated previously, not every process and resource falls within the TCB, so some of
these components fall outside of an imaginary boundary referred to as the security pe-
rimeter. A security perimeter is a boundary that divides the trusted from the untrusted.
For the system to stay in a secure and trusted state, precise communication standards
must be developed to ensure that when a component within the TCB needs to com-
municate with a component outside the TCB, the communication cannot expose the
system to unexpected security compromises. This type of communication is handled
and controlled through interfaces.

For example, a resource that is within the boundary of the TCB, or security perim-
eter, must not allow less trusted components access to critical system resources. The
processes within the TCB must also be careful about the commands and information
they accept from less trusted resources. These limitations and restrictions are built into
the interfaces that permit this type of communication to take place and are the mecha-
nisms that enforce the security perimeter. Communication between trusted compo-
nents and untrusted components needs to be controlled to ensure that the system stays
stable and safe.

Chapter 5: Security Architecture and Design

NOTE The TCB and security perimeter are not physical entities, but
conceptual constructs used by system developers to
delineate between trusted and untrusted components.

Reference Monitor and Security Kernel

Up to now, our computer system architecture developers have accomplished many
things in developing their system. They have defined where the security mechanisms
will be located (hardware, kernel, operating system, services, or programs), the pro-
cesses that are within the TCB, and how the security mechanisms and processes will
interact with each other. They have defined the security perimeter that separates the
trusted and untrusted components. They have developed proper interfaces for these
entities to communicate securely. Now they need to develop and implement a mecha-
nism that ensures that the subjects that access objects have been given the necessary
permissions to do so. This means the developers need to develop and implement a
reference monitor and security kernel.

The reference monitor is an abstract machine that mediates all access subjects have
to objects, both to ensure that the subjects have the necessary access rights and to pro-
tect the objects from unauthorized access and destructive modification. For a system to
achieve a higher level of trust, it must require subjects (programs, users, or processes)
to be fully authorized prior to accessing an object (file, program, or resource). A subject
must not be allowed to use a requested resource until the subject has proven it has been
granted access privileges to use the requested object. The reference monitor is an access
control concept, not an actual physical component, which is why it is normally referred
to as the “reference monitor concept” or an “abstract machine.”

The security kernel is made up of hardware, software, and firmware components
that fall within the TCB and implements and enforces the reference monitor concept.
The security kernel mediates all access and functions between subjects and objects. The
security kernel is the core of the TCB and is the most commonly used approach to
building trusted computing systems. The security kernel has three main requirements:

¢ [t must provide isolation for the processes carrying out the reference monitor
concept, and the processes must be tamperproof.

e [t must be invoked for every access attempt and must be impossible to
circumvent. Thus, the security kernel must be implemented in a complete
and foolproof way.

¢ [t must be small enough to be tested and verified in a complete and
comprehensive manner.

These are the requirements of the reference monitor; therefore, they are the require-
ments of the components that provide and enforce the reference monitor concept—the
security kernel.

49

CISSP All-in-One Exam Guide

50

These issues work in the abstract but are implemented in the physical world of
hardware devices and software code. The assurance that the components are enforc-
ing the abstract idea of the reference monitor is proved through testing and func-
tionality.

NOTE The reference monitor is a concept in which an abstract machine
mediates all access to objects by subjects. The security kernel is the hardware,
firmware, and software of a TCB that implements this concept. The TCB is

the totality of protection mechanisms within a computer system that work
together to enforce a security policy. The TCB contains the security kernel
and all other security protection mechanisms.

The following is a quick analogy to show you the relationship between the pro-
cesses that make up the kernel, the kernel itself, and the reference monitor concept.
Individuals make up a society. The individuals represent the processes, and the society
represents the kernel. For a society to have a certain standard of living, its members
must interact in specific ways, which is why we have laws. The laws represent the refer-
ence monitor, which enforces proper activity. Each individual is expected to stay within
the bounds of the laws and act in specific ways so society as a whole is not adversely
affected and the standard of living is not threatened. The components within a system
must stay within the bounds of the reference monitor’s laws so they will not adversely
affect other components and threaten the security of the system.

References

e “Rationale Behind the Evaluation Classes” www.kernel.org/pub/linux/libs/
security/Orange-Linux/refs/Orange/Orangel-II-6.html

e The Reference Monitor Concept http://citeseer.ist.psu.edu/299300.html

e Implementing Complete Mediation www.cs.cornell.edu/html/cs513-sp99/
NLO05.html

Security Policy

As previously stated, the TCB contains components that directly enforce the security
policy, but what is a security policy? A security policy is a set of rules and practices that
dictates how sensitive information and resources are managed, protected, and distrib-
uted. A security policy expresses exactly what the security level should be by setting the
goals of what the security mechanisms are supposed to accomplish. This is an impor-
tant element that has a major role in defining the design of the system. The security
policy is a foundation for the specifications of a system and provides the baseline for
evaluating a system.

Chapter 3 examined security policies in depth, but those policies were directed to-
ward the company itself. The security policies being addressed here are for operating
systems, devices, and applications. The different policies are similar but have different
targets: an organization as opposed to an individual computer system.

Chapter 5: Security Architecture and Design

5

A system provides trust by fulfilling and enforcing the security policy and oversees
the communication between subjects and objects. The policy must indicate which sub-
jects can access individual objects, and which actions are acceptable and unacceptable.
The security policy provides the framework for the system'’s security architecture.

For a system to provide an acceptable level of trust, it must be based on an architec-
ture that provides the capabilities to protect itself from untrusted processes, intentional
or accidental compromises, and attacks at different layers of the system. A majority of
the trust ratings obtained through formal evaluations require a defined subset of sub-
jects and objects, explicit domains, and the isolation of processes so their access can be
controlled and the activities performed on them can be audited.

Let’s regroup. We know that a system’s trust is defined by how it enforces its own
security policy. When a system is tested against specific criteria, a rating is assigned to the
system and this rating is used by customers, vendors, and the computing society as a
whole. The criteria will determine if the security policy is being properly supported and
enforced. The security policy lays out the rules and practices pertaining to how a system
will manage, protect, and allow access to sensitive resources. The reference monitor is a
concept that says all subjects must have proper authorization to access objects, and this
concept is implemented by the security kernel. The security kernel comprises all the re-
sources that supervise system activity in accordance with the system'’s security policy and
is part of the operating system that controls access to system resources. For the security
kernel to work correctly, the individual processes must be isolated from each other and
domains must be defined to dictate which objects are available to which subjects.

Security policies that prevent information from flowing from a high security level
to a lower security level are called multilevel security policies. These types of policies
permit a subject to access an object only if the subject’s security level is higher than or
equal to the object’s classification.

As previously stated, the concepts covered in the previous sections are abstract ideas
that will be manifested in physical hardware components, firmware, software code, and
activities through designing, building, and implementing a system. These ideas are like
abstract goals and dreams we would like to accomplish, which are obtained by our
physical hard work and discipline.

Least Privilege

Once resources and processes are isolated properly, least privilege needs to be enforced.
This means that a process has no more privileges than necessary to be able to fulfill its
functions. Only processes that need to carry out critical system functions should be al-
lowed to, and other, less privileged processes should call upon the more privileged
processes to carry out these types of activities when necessary. This type of indirect ac-
tivity protects the system from poorly written or misbehaving code. Processes should
possess a level of privilege only as long as they really need it. If a process needs to have
its status elevated so it can interact directly with a system resource, as soon as its tasks
are complete, the process’s status should be dropped to a lower privilege to ensure that
another mechanism cannot use it to adversely affect the system. Only processes that
need complete system privileges are located in the kernel—other, less privileged pro-
cesses call upon them to process sensitive or delicate operations.

CISSP All-in-One Exam Guide

52

As an example of least privilege access control, the system backup program may have
read access on the files, but it does not need to be able to modify the files. Similarly, the
restore program would be allowed to write files to the disk, but not to read them.

Security Models

An important concept in the design and analysis of secure systems is the security mod-
el, because it incorporates the security policy that should be enforced in the system. A
model is a symbolic representation of a policy. It maps the desires of the policymakers
into a set of rules that a computer system must follow.

The reason this chapter has repeatedly mentioned the security policy and its impor-
tance is that it is an abstract term that represents the objectives and goals a system must
meet and accomplish to be deemed secure and acceptable. How do we get from an
abstract security policy to the point at which an administrator is able to uncheck a box
on the GUI to disallow David from accessing configuration files on his system? There
are many complex steps in between that take place during the system'’s design and de-
velopment.

A security model maps the abstract goals of the policy to information system terms
by specifying explicit data structures and techniques necessary to enforce the security
policy. A security model is usually represented in mathematics and analytical ideas,
which are then mapped to system specifications, and then developed by programmers
through programming code. So we have a policy that encompasses security goals like
“each subject must be authorized to access each object.” The security model takes this
requirement and provides the necessary mathematical formulas, relationships, and
structure to be followed to accomplish this goal. From there, specifications are devel-
oped per operating system type (Unix, Windows, Macintosh, and so on), and individ-
ual vendors can decide how they are going to implement mechanisms that meet these
necessary specifications.

So in a very general and simplistic example, if a security policy states that subjects
need to be authorized to access objects, the security model would provide the mathe-
matical relationships and formulas explaining how x can access y only through the
outlined specific methods. Specifications are then developed to provide a bridge to
what this means in a computing environment and how it maps to components and
mechanisms that need to be coded and developed. The developers then write the pro-
gram code to produce the mechanisms that provide a way for a system to use ACLs and
give administrators some degree of control. This mechanism presents the network ad-

Relationship Between a Security Policy and a Security Model

If someone tells you to live a healthy and responsible life, this is a very broad,
vague, and abstract notion. So when you ask this person how this is accomplished,
they outline the things you should and should not do (do not harm others, do
not lie, eat your vegetables, and brush your teeth). The security policy provides
the abstract goals, and the security model provides the dos and don'ts necessary
to fulfill these goals.

Chapter 5: Security Architecture and Design

53

ministrator with a GUI that enables the administrator to choose (via check boxes, for
example) which subjects can access what objects, to be able to set this configuration
within the operating system. This is a rudimentary example, because security models
can be very complex, but it is used to demonstrate the relationship between the secu-
rity policy and the security model.

Some security models, such as the Bell-LaPadula model, enforce rules to provide
confidentiality protection. Other models, such as the Biba model, enforce rules to pro-
vide integrity protection. Formal security models, such as Bell-LaPadula and Biba, are
used to provide high assurance in security. Informal models, such as Clark-Wilson, are
used more as a framework to describe how security policies should be expressed and
executed.

A security policy outlines goals without regard to how they will be accomplished. A
model is a framework that gives the policy form and solves security access problems for
particular situations. Several security models have been developed to enforce security
policies. The following sections provide overviews of each model.

State Machine Models

No matter what state I am in, I am always safe.

In state machine models, to verify the security of a system, the state is used, which
means that all current permissions and all current instances of subjects accessing ob-
jects must be captured. Maintaining the state of a system deals with each subject’s as-
sociation with objects. If the subjects can access objects only by means that are
concurrent with the security policy, the system is secure. State machines have provided
a basis for important security models. A state of a system is a snapshot of a system at
one moment of time. Many activities can alter this state, which are referred to as state
transitions. The developers of an operating system that will implement the state ma-
chine model need to look at all the different state transitions that are possible and as-
sess whether a system that starts up in a secure state can be put into an insecure state by
any of these events. If all of the activities that are allowed to happen in the system do
not compromise the system and put it into an insecure state, then the system executes
a secure state machine model.

Formal Models

Using models in software development has not become as popular as once imag-
ined, primarily because vendors are under pressure to get products to market as
soon as possible. Using formal models takes more time during the architectural
phase of development, extra time that many vendors feel they cannot afford. For-
mal models are definitely used in the development of systems that cannot allow
errors or security breaches, such as air traffic control systems, spacecraft software,
railway signaling systems, military classified systems, and medical control systems.
This does not mean that these models, or portions of them, are not used in indus-
try products, but rather that industry vendors do not always follow these models
in the purely formal and mathematical way that the models were designed for.

CISSP All-in-One Exam Guide

54

The state machine model is used to describe the behavior of a system to different
inputs. It provides mathematical constructs that represent sets (subjects and objects)
and sequences. When an object accepts an input, this modifies a state variable. A sim-
plistic example of a state variable is (Name, Value), as shown in Figure 5-16. This vari-
able is part of the operating system’s instruction set. When this variable is called upon
to be used, it can be populated with (Color, Red) from the input of a user or program.
Let's say the user enters a different value, so now the variable is (Color, Blue). This is a
simplistic example of a state transition. Some state transitions are this simple, but com-
plexity comes in when the system must decide if this transition should be allowed. To
allow this transition, the object’s security attributes and the access rights of the subject
must be reviewed and allowed by the operating system.

Developers who implement the state machine model must identify all the initial
states (default variable values) and outline how these values can be changed (inputs
that will be accepted) so the various number of final states (resulting values) still ensure
that the system is safe. The outline of how these values can be changed is often imple-
mented through condition statements: “if condition then update.”

A system that has employed a state machine model will be in a secure state in each
and every instance of its existence. It will boot up into a secure state, execute commands
and transactions securely, allow subjects to access resources only in secure states, and

|. Default values of state variable
must be safe.

2. User attempts to change variable
default value. | Variable

3. System checks this subject’s authentication. ’

4. System ensures that change will not put (Name,Value)
system into an insecure state.

5. System allows the variable values Operating system
to change = STATE CHANGE.

Application

M \2> Application

3. Variable
4. (Color, Red)
5. Operating system

Steps repeat, which causes Application
another state change
Variable
(Color, Blue)

Operating system

Figure 5-16 A simplistic example of a state change

Chapter 5: Security Architecture and Design

55

shut down and fail in a secure state. Failing in a secure state is extremely important. It
is imperative that if anything unsafe takes place, the system must be able to “save itself”
and not make itself vulnerable. When an operating system displays an error message to
the user or reboots or freezes, it is executing a safety measure. The operating system has
experienced something that is deemed illegal and it cannot take care of the situation
itself, so to make sure it does not stay in this insecure state, it reacts in one of these
fashions. Thus, if an application or system freezes on you, know that it is simply the
system trying to protect itself and your data.

Several points should be considered when developing a product that uses a state
machine model. Initially, the developer must define what and where the state variables
are. In a computer environment, all data variables could independently be considered
state variables, and an inappropriate change to one could conceivably change or cor-
rupt the system or another process’s activities. Next, the developer must define a secure
state for each state variable. The next step is to define and identify the allowable state
transition functions. These functions will describe the allowable changes that can be
made to the state variables.

After the state transition functions are defined, they must be tested to verify that the
overall machine state will not be compromised and that these transition functions will
keep the integrity of the system (computer, data, program, or process) intact at all times.

The Bell-LaPadula Model

I don’t want anyone to know my secrets.
Response: We need Mr. Bell and Mr. LaPadula in here then.

In the 1970s, the U.S. military used time-sharing mainframe systems and was con-
cerned about the security of these systems and leakage of classified information. The
Bell-LaPadula model was developed to address these concerns. It was the first mathe-
matical model of a multilevel security policy used to define the concept of a secure state
machine and modes of access and outlined rules of access. Its development was funded
by the U.S. government to provide a framework for computer systems that would be
used to store and process sensitive information. The model’s main goal was to prevent
secret information from being accessed in an unauthorized manner.

A system that employs the Bell-LaPadula model is called a multilevel security system
because users with different clearances use the system, and the system processes data
with different classifications. The level at which information is classified determines the
handling procedures that should be used. The Bell-LaPadula model is a state machine
model that enforces the confidentiality aspects of access control. A matrix and security
levels are used to determine if subjects can access different objects. The subject’s clear-
ance is compared to the object’s classification and then specific rules are applied to
control how subject-to-object interactions can take place.

This model uses subjects, objects, access operations (read, write, and read/write),
and security levels. Subjects and objects can reside at different security levels and will
have relationships and rules dictating the acceptable activities between them. This
model, when properly implemented and enforced, has been mathematically proven to
provide a very secure and effective operating system. It is an information-flow security
model also, which means that information does not flow in an insecure manner.

CISSP All-in-One Exam Guide

56

The Bell-LaPadula model is a subject-to-object model. An example would be how
you (subject) could read a data element (object) from a specific database and write data
into that database. The Bell-LaPadula model focuses on ensuring that subjects are prop-
erly authenticated—by having the necessary security clearance, need to know, and for-
mal access approval—before accessing an object.

Three main rules are used and enforced in the Bell-LaPadula model: the simple se-
curity rule, the *-property (star property) rule, and the strong star property rule. The
simple security rule states that a subject at a given security level cannot read data that
reside at a higher security level. For example, if Bob is given the security clearance of
secret, this rule states he cannot read data classified as top secret. If the organization
wanted Bob to be able to read top-secret data, it would have given him that clearance
in the first place.

The *-property rule (star property rule) states that a subject in a given security level
cannot write information to a lower security level. The simple security rule is referred to
as the “no read up” rule, and the *-property rule is referred to as the “no write down”
rule, as shown in Figure 5-17. The third rule, the strong star property rule, states that a
subject that has read and write capabilities can only perform those functions at the
same security level, nothing higher and nothing lower. So, for a subject to be able to
read and write to an object, the clearance and classification must be equal.

These three rules indicate what states the system can go into. Remember that a state
is the values of the variables in the software at a snapshot in time. If a subject has
performed a read operation on an object at a lower security level, the subject now has
a variable that is populated with the data that was read, or copied into its variable. If a
subject has written to an object at a higher security level, the subject has modified
a variable within that object’s domain.

Top secret
Secret Upper bound
Cannot “read up”
Subject Lattice
} Cannot “write down”
Confidential Lower bound
Public

Figure 5-17 In the Bell-LaPadula model, each subject has a lattice of rights.

Chapter 5: Security Architecture and Design

NOTE In access control terms, the word dominate means to be higher than
or equal to. So if you see a statement such as “A subject can only perform a
read operation if the access class of the subject dominates the access class
of an object,” this just means the subject must have a clearance that is higher
than or equal to the object. In the Bell-LaPadula model, this is referred to as
the dominance relation, which is the relationship of the subject’s clearance to
the object’s classification.

The state of a system changes as different operations take place. The Bell-LaPadula
model defines a secure state, meaning a secure computing environment and the al-
lowed actions, which are security-preserving operations. This means the model pro-
vides a secure state and only permits operations that will keep the system within a
secure state and not let it enter into an insecure state. So if 100 people access 2000 ob-
jects in a day using this one system, this system is put through a lot of work and several
complex activities must take place. However, at the end of the day, the system is just as
secure as it was at the beginning of the day. This is the definition of the Basic Security
Theorem used in computer science, which states that if a system initializes in a secure
state and all allowed state transitions are secure, then every subsequent state will be
secure no matter what inputs occur.

NOTE The tranquility principle, which is also used in this model, means that
subjects and objects cannot change their security levels once they have been
instantiated (created).

An important thing to note is that the Bell-LaPadula model was developed to make
sure secrets stay secret; thus, it provides and addresses confidentiality only. This model
does not address the integrity of the data the system maintains—only who can and can-
not access the data and what operations can be carried out.

NOTE Ensuring that information does not flow from a higher security
level to a lower level is referred to as controlling unauthorized downgrading of
information, which would take place through a “write down” operation.An
actual compromise occurs if and when a user at a lower security level reads
this data.

So what does this mean and why does it matter? Chapter 4 discussed mandatory ac-
cess control (MAC) systems versus discretionary access control (DAC) systems. All MAC
systems are based on the Bell-LaPadula model, because it allows for multilevel security
to be integrated into the code. Subjects and objects are assigned labels. The subject’s la-
bel contains its clearance label (top secret, secret, or confidential) and the object’s label
contains its classification label (top secret, secret, or confidential). When a subject at-
tempts to access an object, the system compares the subject’s clearance label and the
object’s classification label and looks at a matrix to see if this is a legal and secure activ-
ity. In our scenario, it is a perfectly fine activity, and the subject is given access to the

51

CISSP All-in-One Exam Guide

58

object. Now, if the subject’s clearance label is top secret and the object’s classification
label is secret, the subject cannot write to this object, because of the *-property rule,
which makes sure that subjects cannot accidentally or intentionally share confidential
information by writing to an object at a lower security level. As an example, suppose that
a busy and clumsy general (who has top secret clearance) in the army opens up a brief-
ing letter (which has a secret classification) that will go to all clerks at all bases around
the world. He attempts to write that the United States is attacking Cuba. The Bell-La-
Padula model will come into action and not permit this general to write this informa-
tion to this type of file because his clearance is higher than that of the memo.

Likewise, if a nosey military staff clerk tried to read a memo that was available only
to generals and above, the Bell-LaPadula model would stop this activity. The clerk’s
clearance is lower than that of the object (the memo), and this violates the simple se-
curity rule of the model. It is all about keeping secrets secret.

NOTE It is important that MAC operating systems and MAC databases
follow these rules. In Chapter ||, we will look at how databases can follow
these rules by the use of polyinstantiation.

CAUTION You may run into the Bell-LaPadula rule called Discretionary

\ Security Property (ds-property), which is another property of this

== model.This rule is based on named subjects and objects. It specifies that
specific permissions allow a subject to pass on permissions at its own
discretion. These permissions are stored in an access matrix. This just means
that mandatory and discretionary access control mechanisms can be
implemented in one operating system.

The Biba Model

The Biba model was developed after the Bell-LaPadula model. It is a state machine
model and is very similar to the Bell-LaPadula model. Biba addresses the integrity of
data within applications. The Bell-LaPadula model uses a lattice of security levels (top
secret, secret, sensitive, and so on). These security levels were developed mainly to en-
sure that sensitive data were only available to authorized individuals. The Biba model

Rules to Know
The main rules of the Bell-LaPadula model that you need to understand are:

e Simple security rule A subject cannot read data within an object that
resides at a higher security level (“No read up” rule).

e *- property rule A subject cannot write to an object at a lower security
level (“No write down” rule).

e Strong star property rule For a subject to be able to read and write to an
object, the subject’s clearance and the object’s classification must be equal.

Chapter 5: Security Architecture and Design

59

is not concerned with security levels and confidentiality, so it does not base access deci-
sions upon this type of lattice. The Biba model uses a lattice of integrity levels.

If implemented and enforced properly, the Biba model prevents data from any in-
tegrity level from flowing to a higher integrity level. Biba has three main rules to provide
this type of protection:

e *.integrity axiom A subject cannot write data to an object at a higher
integrity level (referred to as “no write up”).

e Simple integrity axiom A subject cannot read data from a lower integrity
level (referred to as “no read down”).

¢ Invocation property A subject cannot request service (invoke) to subjects of
higher integrity.

The name “simple integrity axiom” might sound a little goofy, but this rule protects
the subject and data at a higher integrity level from being corrupted by data at a lower
integrity level. This is all about trusting the source of the information. Another way to
look at it is that trusted data are “clean” data and untrusted data (from a lower integrity
level) are “dirty” data. Dirty data should not be mixed with clean data, because that
could ruin the integrity of the clean data.

The simple integrity axiom applies not only to subjects creating the data, but also
to processes. A process of lower integrity should not be writing to trusted data of a
higher integrity level. The areas of the different integrity levels are compartmentalized
within the application that is based on the Biba model.

An analogy would be if you were writing an article for The New York Times about the
security trends over the last year, the amount of money businesses lost, and the cost/
benefit ratio of implementing firewalls, IDSs, and vulnerability scanners. You do not
want to get your data and numbers from any old web site without knowing how those
figures were calculated and the sources of the information. Your article (data at a high-
er integrity level) can be compromised if mixed with unfounded information from a
bad source (data at a lower integrity level).

When you are first learning about the Bell-LaPadula and Biba models, they may seem
very similar, and the reasons for their differences may be somewhat confusing. The Bell-
LaPadula model was written for the U.S. government, and the government is very para-
noid about leakage of its secret information. In its model, a user cannot write to a lower
level because that user might let out some secrets. Similarly, a user at a lower level cannot
read anything at a higher level because that user might learn some secrets. However, not
everyone is so worried about confidentiality and has such big important secrets to pro-
tect. The commercial industry is more concerned about the integrity of its data. An ac-
counting firm is more worried about keeping its numbers straight and making sure
decimal points are not dropped or extra zeroes are not added in a process carried out by
an application. The accounting firm is more concerned about the integrity of these data
and is usually under little threat of someone trying to steal these numbers, so the firm
would use software that employs the Biba model. Of course, the accounting firm does not
look for the name Biba on the back of a product or make sure it is in the design of its ap-
plication. Which model to use is something that was decided upon and implemented
when the application was being designed. The assurance ratings are what consumers use
to determine if a system is right for them. So, even if the accountants are using an applica-

CISSP All-in-One Exam Guide

60

Bell-LaPadula vs. Biba

The Bell-LaPadula model is used to provide confidentiality. The Biba model is used
to provide integrity. The Bell-LaPadula and Biba models are informational flow
models because they are most concerned about data flowing from one level to an-
other. Bell-LaPadula uses security levels, and Biba uses integrity levels. It is impor-
tant for CISSP test takers to know the rules of Biba and Bell-LaPadula. Their rules
sound very similar: simple and *rules—one writing one way and one reading an-
other way. A tip for how to remember them is that if the word “simple” is used, the
rule is talking about reading. If the rule uses * or “star,” it is talking about writing.
So now you just need to remember the reading and writing directions per model.

tion that employs the Biba model, they would not necessarily know (and we're not
going to tell them).

If you don’t have enough rules to understand so far, here’s another one. The invoca-
tion property in the Biba model states that a subject cannot invoke (call upon) a subject
at a higher integrity level. Well, how is this different from the other two Biba rules? The
*-integrity axiom (no write up) dictates how subjects can modify objects. The simple
integrity axiom (no read down) dictates how subjects can read objects. The invocation
property dictates how one subject can communicate with and initialize other subjects
at run time. An example of a subject invoking another subject is when a process sends
a request to a procedure to carry out some type of task. Subjects are only allowed to
invoke tools at a lower integrity level. With the invocation property, the system is mak-
ing sure a dirty subject cannot invoke a clean tool to contaminate a clean object.

References

e Module 5, “Security Policies and Security Models” www.radium.ncsc.mil/
tpep/library/ramp-modules/mod_05.pdf

e Security Models www.iwar.org.uk/comsec/resources/security-lecture/
showb1la7.html

e Course study materials for Introduction to Security, University of
Cambridge, Dr. Markus Kuhn, principal lecturer (academic year
2003-2004) www.cl.cam.ac.uk/Teaching/2003/IntroSecurity/slides.pdf

e Chapter 3.3, “Models of OS Protection,” by Fred Cohen www.all.net/
books/ip/Chap3-3.html

The Clark-Wilson Model

The Clark-Wilson model was developed after Biba and takes some different approaches
to protecting the integrity of information. This model uses the following elements:

e Users Active agents

e Transformation procedures (TPs) Programmed abstract operations, such as
read, write, and modify

¢ Constrained data items (CDIs) Can be manipulated only by TPs

Chapter 5: Security Architecture and Design

6l

¢ Unconstrained data items (UDIs) Can be manipulated by users via
primitive read and write operations

e Integrity verification procedures (IVPs) Check the consistency of CDIs with
external reality

Although this list may look overwhelming, it is really quite straightforward. When
an application uses the Clark-Wilson model, it separates data into one subset that needs
to be highly protected, which is referred to as a constrained data item (CDI) and an-
other subset that does not require a high level of protection, which is called an uncon-
strained data item (UDI). Users cannot modify critical data (CDI) directly. Instead, the
subject (user) must be authenticated to a piece of software, and the software procedures
(TPs) will carry out the operations on behalf of the user. For example, when Kathy
needs to update information held within her company’s database, she will not be al-
lowed to do so without a piece of software controlling these activities. First, Kathy must
authenticate to a program, which is acting as a front end for the database, and then the
program will control what Kathy can and cannot do to the information in the database.
This is referred to as access triple: subject (user), program (TP), and object (CDI). A user
cannot modify CDI without using a TP.

So, Kathy is going to input data, which is supposed to overwrite some original data
in the database. The software (TP) has to make sure this type of activity is secure and
will carry out the write procedures for Kathy. Kathy (and any type of subject) is not
trusted enough to manipulate objects directly.

The CDI must have its integrity protected by the TPs. The UDI does not require such
a high level of protection. For example, if Kathy did her banking online, the data on her
bank’s servers and databases would be split into UDI and CDI categories. The CDI cat-
egory would contain her banking account information, which needs to be highly pro-
tected. The UDI data could be her customer profile, which she can update as needed.
TPs would not be required when Kathy needed to update her UDI information.

In some cases, a system may need to change UDI data into CDI data. For example,
when Kathy updates her customer profile via the web site to show her new correct ad-
dress, this information will need to be moved into the banking software that is respon-
sible for mailing out bank account information. The bank would not want Kathy to
interact directly with that banking software, so a piece of software (TP) is responsible
for copying that data and updating this customer’s mailing address. At this stage, the TP
is changing the state of the UDI data to CDI. These concepts are shown in Figure 5-18.

Remember that this is an integrity model, so it must have something that ensures
that specific integrity rules are being carried out. This is the job of the IVP. The IVP en-
sures that all critical data (CDI) follows the application’s defined integrity rules. What
usually turns people’s minds into spaghetti when they are first learning about models
is that models are theoretical and abstract. Thus, when they ask the common question,
“What are these defined integrity rules that the CDI must comply with?” they are told,
“Whatever the vendor chooses them to be.”

A model is made up of constructs, mathematical formulas, and other PhD kinds of
stuff. The model provides the framework that can be used to build a certain character-
istic into software (confidentiality, integrity, and so on). So the model does not stipu-

CISSP All-in-One Exam Guide

62

Users

CDI
IVP

\ »(_ CDI |
CDI 2

[
| -

TP

CDI 3

HeEe

p(Log CDI

Figure 5-18 Subjects cannot modify CDI without using TP.

late what integrity rules the IVP must enforce; it just provides the framework, and the
vendor chooses the integrity rules. The vendor implements integrity rules that its cus-
tomer base needs the most. So if a vendor is developing an application for a financial
institution, the UDI could be customer profiles that they are allowed to update and the
CDI could be the bank account information, usually held on a mainframe. The UDI
data do not need to be as highly protected and can be located on the same system or
another system. A user can have access to UDI data without the use of a TP, but when
the user needs to access CDI, they must use TP. So the vendor who develops the product
will determine what type of data is considered UDI and what type of data is CDI and
develop the TPs to control and orchestrate how the software enforces the integrity of
the CDI values.

In a banking application, the IVP would ensure that the CDI represents the correct
value. For example, if Kathy has $2000 in her account and then deposits $50, the CDI for
her account should now have a value of $2050. The IVP ensures the consistency of the
data. So after Kathy carries out this transaction and the IVP validates the integrity of the
CDI (new bank account value is correct), then the CDI is considered to be in a consistent
state. TPs are the only components allowed to modify the state of the CDIs. In our ex-
ample, TPs would be software procedures that carry out deposit, withdrawal, and transfer
functionalities. Using TPs to modify CDIs is referred to as a well-formed transaction.

A well-formed transaction is a series of operations that are carried out to transfer the
data from one consistent state to the other. If Kathy transfers money from her checking
account to her savings account, this transaction is made up of two operations: subtract
money from one account and add it to a different account. By making sure the new
values in her checking and savings accounts are accurate and their integrity is intact, the
IVP maintains internal and external consistency. The Clark-Wilson model also outlines
how to incorporate separation of duties into the architecture of an application. If we
follow our same example of banking software, if a customer needs to withdraw over

Chapter 5: Security Architecture and Design

63

Security policy

(6n+49)(n*y*15) Security model

I

Int iSize = xDataset.GetSize ();

:

Programming code

Resulting product
Operating system

$10,000, the application may require a supervisor to log in and authenticate this trans-
action. This is a countermeasure to potential fraudulent activities. The model provides
the rules that the developers must follow to properly implement and enforce separa-
tion of duties through software procedures.

Goals of Integrity Models

The following are the three main goals of integrity models:

e Prevent unauthorized users from making modifications

e Prevent authorized users from making improper modifications (separation
of duties)

¢ Maintain internal and external consistency (well-formed transaction)

Clark-Wilson addresses each of these goals in its model. Biba only addresses the
first goal.

Internal and external consistency is provided by the IVP, which ensures that what is
stored in the system as CDI properly maps to the input value that modified its state. So
if Kathy has $2500 in her account and she withdraws $2000, the resulting value in the
CDI is $500.

CISSP All-in-One Exam Guide

64

To summarize, the Clark-Wilson model enforces the three goals of integrity by us-
ing access triple (subject, software [TP], object), separation of duties, and auditing. This
model enforces integrity by using well-formed transactions (through access triple) and
separation of user duties.

NOTE The access control matrix was covered in Chapter 4.This is another
commonly used model in operating systems and applications.

The Information Flow Model

Now, which way is the information flowing in this system?
Response: Not to you.

The Bell-LaPadula model focuses on preventing information from flowing from a
high security level to a low security level. The Biba model focuses on preventing infor-
mation from flowing from a low integrity level to a high integrity level. Both of these
models were built upon the information flow model. Information flow models can deal
with any kind of information flow, not only from one security (or integrity) level to
another.

In the information flow model, data are thought of as being held in individual and
discrete compartments. In the Bell-LaPadula model, these compartments are based on
security levels. Remember that MAC systems (which you learned about in Chapter 4)
are based on the Bell-LaPadula model. MAC systems use labels on each subject and
object. The subject’s label indicates the subject’s clearance and need to know. The ob-
ject’s label indicates the object’s classification and categories. If you are in the army and
have a top-secret clearance, this does not mean you can access all of the army’s top-se-
cret information. Information is compartmentalized, based on two factors—classifica-
tion and need to know. Your clearance has to dominate the object’s classification and
your security profile must contain one of the categories listed in the object’s label,
which enforces need to know. So Bell-LaPadula is an information flow model that en-
sures that information cannot flow from one compartment to another in a way that
threatens the confidentiality of the data. Biba compartmentalizes data based on integ-
rity levels. It is an information flow model that controls information flow in a way that
is intended to protect the integrity of the most trusted information.

How can information flow within a system? The answer is in many ways. Subjects
can access files. Processes can access memory segments. When data are moved from the
hard drive’s swap space into memory, information flows. Data are moved into and out
of registers on a CPU. Data are moved into different cache memory storage devices.
Data are written to the hard drive, thumb drive, CD-ROM drive, and so on. Properly
controlling all of these ways of how information flows can be a very complex task. This
is why the information flow model exists—to help architects and developers make sure
their software does not allow information to flow in a way that can put the system or
data in danger. One way that the information flow model provides this type of protec-
tion is by ensuring that covert channels do not exist in the code.

Chapter 5: Security Architecture and Design

65

Covert Channels
I have my decoder ring, cape, and pirate’s hat on. I will communicate to my spy buddies with
this tribal drum and a whistle.

A covert channel is a way for an entity to receive information in an unauthorized
manner. It is an information flow that is not controlled by a security mechanism. This
type of information path was not developed for communication; thus, the system does
not properly protect this path, because the developers never envisioned information
being passed in this way. Receiving information in this manner clearly violates the sys-
tem’s security policy.

The channel to transfer this unauthorized data is the result of one of the following
conditions:

e Improper oversight in the development of the product
e Improper implementation of access controls within the software

e Existence of a shared resource between the two entities

Covert channels are of two types: storage and timing. In a covert storage channel,
processes are able to communicate through some type of storage space on the system.
For example, System A is infected with a Trojan horse that has installed software that will
be able to communicate to another process in a limited way. System A has a very sensi-
tive file (File 2) that is of great interest to a particular attacker. The software the Trojan
horse installed is able to read this file and it needs to send the contents of the file to the
attacker and it can only happen one bit at a time. The intrusive software is going to com-
municate to the attacker by locking a specific file (File 3). When the attacker attempts to
access File 3 and finds it has a software lock enabled on it, the attacker interprets this to
mean the first bit in the sensitive file is a 1. The second time the attacker attempts to ac-
cess File 3 it is not locked. The attacker interprets this value to be zero. This continues
until all of the data in the sensitive file are sent to the attacker. In this example, the soft-
ware the Trojan Horse installed is the messenger. It can access the sensitive data and it
uses another file that is on the hard drive to send signals to the attacker.

Other Types of Covert Channels

Although we are looking at covert channels within programming code, covert
channels can be used in the outside world as well. Let’s say you are going to at-
tend one of my lectures. Before the lecture begins, you and I agree on a way of
communicating that no one else in the audience will understand. I tell you that if
I twiddle a pen between my fingers in my right hand, that means there will be a
quiz at the end of class. If I twiddle a pen between my fingers in my left hand,
there will be no quiz. It is a covert channel, because this is not a normal way of
communicating and it is secretive. (In this scenario, I would twiddle the pen in
both hands to confuse you and make you stay after class to take the quiz all by
yourself. Shame on you for wanting to be forewarned about a quiz!)

CISSP All-in-One Exam Guide

66

Another way that a cover storage channel attack can take place is through file creation.
A system has been compromised and has software that can create and delete files within a
specific directory and has read access to a sensitive file. When the intrusive software sees that
the first bit of the data within the sensitive file is 1, it will create a file named Temp in a
specific directory. The attacker will try and create (or upload) a file with the exact same
name and the attacker will receive a message indicating there is already a file with that name
that exists in that directory. The attacker will know this means the first bit in the sensitive file
isa 1. The attacker tries to create the same file again and when the system allows this it means
the intrusive software on the system deleted that file, which means the second bit is a 0.

Information flow models produce rules on how to ensure that covert channels do not
exist. But there are many ways information flows within a system, so identifying and root-
ing out covert channels is usually more difficult than one would think at first glance.

NOTE An overt channel is a channel of communication that was developed
specifically for communication purposes. Processes should be communicating
through overt channels, not covert channels.

In a covert timing channel, one process relays information to another by modulating
its use of system resources. The two processes that are communicating to each other are
using the same shared resource, which is time. So in our example, Process A is a piece of
nefarious software that was installed via a Trojan horse. In a multitasked system, each
process is offered access to interact with the CPU. When this function is offered to Process
A, it rejects it—which indicates a 1 to the attacker. The next time Process A is offered ac-
cess to the CPU, it uses it, which indicates a 0 to the attacker. Think of this as a type of
Morse code, but using some type of system resource.

Countermeasures Because all operating systems have some type of covert channel, it
is not always feasible to get rid of them all. The number of acceptable covert channels usu-
ally depends on the assurance rating of a system. A system that has a Common Criteria rating
of EAL 6 has fewer covert channels than a system with an FEAL rating of 3, because an EAL 6
rating represents a higher assurance level of providing a particular protection level when
compared to the EAL 3 rating. There is not much a user can do to counteract these channels;
instead, the channels must be addressed when the system is constructed and developed.

NOTE In the Orange Book, covert channels in operating systems are not
addressed until the security level B2 and above because these are the systems
that would be holding data sensitive enough for others to go through all the
necessary trouble to access data in this fashion.

References

e “Secure Databases: An Analysis of Clark-Wilson Model in a
Database Environment,” by Xiaocheng Ge, Fiona Polack, and Régine
Laleau www-users.cs.york.ac.uk/~fiona/PUBS/CAiSE04.pdf

e “Access Control: Theory and Practice” www.cs.purdue.edu/homes/ninghui/
courses/Fall03/lectures/lecture11_6.pdf

Chapter 5: Security Architecture and Design

e “New Thinking About Information Technology Security,” by Marshall D.
Abrams, PhD and Michael V. Joyce (first published in Computers & Security,
Vol. 14, No. 1, pp. 57-68) www.acsac.org/secshelf/papers/new_thinking.pdf

The Noninterference Model

Stop touching me. Stop touching me. You are interfering with me!

Multilevel security properties can be expressed in many ways, one being noninterfer-
ence. This concept is implemented to ensure any actions that take place at a higher se-
curity level do not affect, or interfere with, actions that take place at a lower level. This
type of model does not concern itself with the flow of data, but rather with what a sub-
ject knows about the state of the system. So if an entity at a higher security level per-
forms an action, it cannot change the state for the entity at the lower level.

If a lower-level entity was aware of a certain activity that took place by an entity at a
higher level and the state of the system changed for this lower-level entity, the entity
might be able to deduce too much information about the activities of the higher state,
which in turn is a way of leaking information.

Users at a lower security level should not be aware of the commands executed by
users at a higher level and should not be affected by those commands in any way.

Let's say that Tom and Kathy are both working on a multilevel mainframe at the
same time. Tom has the security clearance of secret and Kathy has the security clearance
of top secret. Since this is a central mainframe, the terminal Tom is working at has the
context of secret, and Kathy is working at her own terminal, which has a context of top
secret. This model states that nothing Kathy does at her terminal should directly or in-
directly affect Tom’s domain (available resources and working environment). So what-
ever commands she executes or whichever resources she interacts with should not affect
Tom'’s experience of working with the mainframe in any way. This sounds simple
enough, until you actually understand what this model is really saying.

It seems very logical and straightforward that when Kathy executes a command, it
should not affect Tom’s terminal. But the real intent of this model is to address covert
channels and inference attacks. The model looks at the shared resources that the different
users of a system will use and tries to identify how information can be passed from a
process working at a higher security clearance to a process working at a lower security
clearance. Since Tom and Kathy are working on the same system at the same time, they
will most likely have to share some type of resources. So the model is made up of rules to
ensure that Kathy cannot pass data to Tom through covert storage or timing channels.

The other security breach this model addresses is the inference attack. An inference
attack occurs when someone has access to some type of information and can infer (or
guess) something that he does not have the clearance level or authority to know. For
example, let’s say Tom is working on a file that contains information about supplies
that are being sent to Russia. He closes out of that file and one hour later attempts to
open the same file. During this time, this file’s classification has been elevated to top
secret, so when Tom attempts to access it, he is denied. Tom can infer that some type of
top-secret mission is getting ready to take place with Russia. He does not have clearance
to know this, thus it would be an inference attack or “leaking information.” (Inference
attacks are further explained in Chapter 11.)

67

CISSP All-in-One Exam Guide

68

The Lattice Model

A lattice is a mathematical construct that is built upon the notion of a group. The most
common definition of the lattice model is “a structure consisting of a finite partially
ordered set together with least upper and greatest lower bound operators on the set.”

Two things are wrong with this type of explanation. First, “a structure consisting of
a finite partially ordered set together with least upper and greatest lower bound opera-
tors on the set” can only be understood by someone who understands the model in the
first place. This is similar to the common definition of metadata: “data about data.”
Only after you really understand what metadata are does this definition make any sense
to you. So this definition of lattice model is not overly helpful.

The problem with the mathematical explanation is that it is in weird alien writings
that only people who obtain their master’s or PhD degree in mathematics can under-
stand. This model needs to be explained in everyday language so even Homer Simpson
can understand it. So let’s give it a try.

The MAC model was explained in Chapter 4 and then built upon in this chapter. In
this model, the subjects and objects have labels. Each subject’s label contains the clear-
ance and need-to-know categories that this subject can access. Suppose Kathy's security
clearance is top secret and she has been formally granted access to the compartments
named Iraq and Korea, based on her need to know. So Kathy’s security label states the
following: TS {Iraq, Korea}. Table 5-1 shows the different files on the system in this
scenario. The system is based on the MAC model, which means the operating system is
making access decisions based on security label contents.

Kathy attempts to access File B; since her clearance is greater than File B’s classifica-
tion, she can read this file but not write to it. (Remember, under Bell-LaPadula, a high-
er-level subject can read down, but not write up). This is where the “partially ordered set
together with least upper and greatest lower bound operators on the set” comes into play.
A set is a subject (Kathy) and an object (file). It is a partially ordered set because all of
the access controls are not completely equal. The system has to decide between read,
write, full control, modify, and all the other types of access permissions used in this
operating system. So, “partially ordered” means the system has to apply the most re-
strictive access controls to this set, and “least upper bound” means the system looks at
one access control’s statement (Kathy can read the file) and the other access control’s
statement (Kathy cannot write to the file) and takes the least upper bound value. Since
no write is more restrictive than read, Kathy's least upper bound access to this file is read
and her greatest lower bound is no write. Figure 5-19 illustrates the bounds of access.
This is just a confusing way of saying, “The most that Kathy can do with this file is read
it. The least she can do is not write to it.”

Kathy’s Security Label File B’s Security Label File C’s Security Label File D’s Security

Label
Top Secret {Iraq, Secret {Iraq} Top Secret {lraq, Secret {Iraq, Korea,
Korea} Korea} Iran}

Table 5-1 Security Access Control Elements

Chapter 5: Security Architecture and Design

Figure 5-19 Least upper bound Read
Bounds of access ?
through the lattice File B
model ¢
Greatest lower bound No write
Least upper bound ? Write
File C
Greatest lower bound ¢ Read
Least upper bound No access
Greatest lower bound No access

Let’s figure out the least upper bound and greatest lower bound access levels for
Kathy and File C. Kathy's clearance equals File C’s classification. Under the Bell-LaPad-
ula model, this is when the strong star property would kick in. (Remember that the
strong star property states that a subject can read and write to an object of the same
security level.) So the least upper bound is write and the greatest lower bound is read.

If we look at File D's security label, we see it has a category that Kathy does not have
in her security label, which is Iran. This means Kathy does not have the necessary need
to know to be able to access this file. Kathy’s least upper bound and greatest lower
bound access permission is no access.

So why does this model state things in a very confusing way when in reality it de-
scribes pretty straightforward concepts? First, I am describing this model in the most
simplistic and basic terms possible so you can get the basic meaning of the purpose of
the model. These seemingly straightforward concepts build in complexity when you
think about all the subject-to-object communications that go on within an operating
system during any one second. Also, this is a formal model, which means it can be
proven mathematically to provide a specific level of protection if all of its rules are fol-
lowed properly. Learning these models is similar to learning the basics of chemistry. A
student first learns about the components of an atom (protons, neutrons, and elec-
trons) and how these elements interact with each other. This is the easy piece. Then the
student gets into organic chemistry and has to understand how these components work
together in complex organic systems (weak and strong attractions, osmosis, and ioniza-
tion). The student then goes to quantum physics to learn that the individual elements
of an atom actually have several different subatomic particles (quarks, leptons, and
mesons). In this book, you are just learning the basic components of the models. Much
more complexity lies under the covers.

69

CISSP All-in-One Exam Guide

10

The Brewer and Nash Model

A wall separates our stuff so you can’t touch my stuff.
Response: Your stuff is green and smells funny. I don’t want to touch it.

The Brewer and Nash model, also called the Chinese Wall model, was created to pro-
vide access controls that can change dynamically depending upon a user’s previous
actions. The main goal of the model is to protect against conflicts of interest by users’
access attempts. For example, if a large marketing company provides marketing promo-
tions and materials for two banks, an employee working on a project for Bank A should
not look at the information the marketing company has on its other bank customer,
Bank B. Such action could create a conflict of interest because the banks are competi-
tors. If the marketing company’s project manager for the Bank A project could view
information on Bank B’s new marketing campaign, he may try to trump its promotion
to please his more direct customer. The marketing company would get a bad reputation
if it allowed its internal employees to behave so irresponsibly.

This marketing company could implement a product that tracks the different mar-
keting representatives’ access activities and disallows certain access requests that would
present this type of conflict of interest. In Figure 5-20, we see that when a representa-
tive accesses Bank A’s information, the system automatically makes Bank B’s informa-
tion off limits. If the representative accessed Bank B’s data, Bank A’s information
would be off limits. These access controls change dynamically depending upon the
user’s authorizations, activities, and previous access requests.

The Chinese Wall model is also based on an information flow model. No informa-
tion can flow between subjects and objects in a way that would result in a conflict of
interest. The model states that a subject can write to an object if, and only if, the sub-
ject cannot read another object that is in a different dataset. So if we stay with our ex-
ample, the project manager could not write to any objects within the Bank A dataset if
he currently has read access to any objects in the Bank B dataset.

Wall
Bank A < Bank B
Corporation Corporation
Datasets data data
representing
each Corporation”Corporation Corporation”Corporation
company data) data data)\ data
Corporation Corporation
data data

?é Conflict of
interest class

Figure 5-20 The Chinese Wall model provides dynamic access controls.

User

Chapter 5: Security Architecture and Design

1l

This is only one example of how this model can be used. Other industries will
have their own possible conflicts of interest. If you were Martha’s stockbroker, you
should not be able to read a dataset that indicates a stock’s price is getting ready to
go down and be able to write to Martha’s account indicating she should sell the stock
she has.

The Graham-Denning Model

Remember that these are all models, thus they are not very specific in nature. Each in-
dividual vendor must decide upon how it is going to actually meet the rules outlined in
the chosen model. Bell-LaPadula and Biba don't define how the security and integrity
ratings are defined and modified, nor do they provide a way to delegate or transfer ac-
cess rights. The Graham-Denning model addresses these issues and defines a set of basic
rights in terms of commands that a specific subject can execute on an object. This
model has eight primitive protection rights, or rules of how these types of functional-
ities should take place securely, which are outlined next:

e How to securely create an object

e How to securely create a subject

e How to securely delete an object

e How to securely delete a subject

e How to securely provide the read access right
e How to securely provide the grant access right
e How to securely provide the delete access right

e How to securely provide transfer access rights

These things may sound insignificant, but when building a secure system, they are
critical.

The Harrison-Ruzzo-Uilman Model

The Harrison-Ruzzo-Ulman model deals with access rights of subjects and the integrity
of those rights. A subject can carry out only a finite set of operations on an object. Since
security loves simplicity, it is easier for a system to allow or disallow authorization of
operations if one command is restricted to a single operation. For example, if a subject
sent command X which only required the operation of Y, this is pretty straightforward
and allows the system to allow or disallow this operation to take place. But, if a subject
sent a command M, and to fulfill that command, operations N, B, W, and P had to be
carried out—there is much more complexity for the system to decide if this command
should be authorized.

CISSP All-in-One Exam Guide

!

Security Models Recap

All of these different models can get your head spinning. Most people are not
familiar with all of them, which can make it all even harder to absorb. The follow-
ing are the core concepts of the different models.

The Bell-LaPadula Model This confidentiality model describes the
allowable information flows and formalizes the military security policy.
It is the first mathematical model of a multilevel security policy that
defines the concept of a secure state and necessary modes of access.

e The simple security rule A subject cannot read data at a higher
security level (no read up).

e The *-property rule A subject cannot write data to an object at a
lower security level (no write down).

e The strong star property rule A subject can perform read and write
functions only to the objects at its same security level.

The Biba Model This model protects the integrity of the information

within a system and the activities that take place. It addresses the first

goal of integrity.

e The simple integrity axiom A subject cannot read data at a lower
integrity level (no read down).

e The *-integrity axiom A subject cannot modify an object in a
higher integrity level (no write up).

The Clark-Wilson Model This integrity model is implemented to
protect the integrity of data and to ensure that properly formatted
transactions take place. It addresses all three goals of integrity.

e Subjects can access objects only through authorized programs
(access triple).

e Separation of duties is enforced.
e Auditing is required.

The Access Control Matrix Model This is a model in which access
decisions are based on objects” ACLs and subjects’ capability tables.

The Information Flow Model This is a model in which information
is restricted in its flow to only go to and from entities in a way that does
not negate the security policy.

The Noninterference Model This model states that commands and
activities performed at one security level should not be seen by, or affect,
subjects or objects at a different security level.

Chapter 5: Security Architecture and Design

13

e The Brewer and Nash Model This model allows for dynamically
changing access controls that protect against conflicts of interest. Also
known as the Chinese Wall model.

e The Graham-Denning Model This model shows how subjects and
objects should be created and deleted. It also addresses how to assign
specific access rights.

References

e Various Papers on Models http://citeseer.ist.psu.edu/context/20585/0

e “A Lattice Model of Secure Information Flow,” by Dorothy E. Denning (first
published in Communications of the ACM, Vol. 19, No. 5, pp. 236-243 (May
1976) www.cs.georgetown.edu/~denning/infosec/lattice76.pdf

¢ Course syllabus for Security, University of Cambridge, Dr. Ross Anderson,
principal lecturer (Jan. 1999) www.cl.cam.ac.uk/Teaching/1998/Security/

e Access Control and Security Policy Models www.tml.hut.fi/Opinnot/
T-110.402/2003/Luennot/titu20031024.pdf

Security Modes of Operation

A system can operate in different modes depending on the sensitivity of the data being
processed, the clearance level of the users, and what those users are authorized to do.
The mode of operation describes the security conditions under which the system actu-
ally functions.

These modes are used in MAC systems, which hold one or more classifications of
data. Several things come into play when determining the mode the operating system
should be working in:

e The types of users who will be directly or indirectly connecting to the system

e The type of data (classification levels, compartments, and categories)
processed on the system

e The clearance levels, need to know, and formal access approvals the users
will have

The following sections describe the different security modes that operating systems
can be developed and configured to work in.

CISSP All-in-One Exam Guide

14

Dedicated Security Mode

Our system only holds secret data and we can all access fit.

A system is operating in a dedicated security mode if all users have a clearance for,
and a formal need to know about, all data processed within the system. All users have
been given formal access approval for all information on the system and have signed
nondisclosure agreements (NDAs) pertaining to this information. The system can han-
dle a single classification level of information.

Many military systems have been designed to handle only one level of security,
which works in dedicated security mode. This requires everyone who uses the system to
have the highest level of clearance required by any and all data on the system. If a sys-
tem holds top-secret data, only users with that clearance can use the system. Other
military systems work with multiple security levels, which is done by compartmental-
izing the data. These types of systems can support users with high and low clearances
simultaneously.

System High-Security Mode

Our system only holds secret data, but only some of us can access all of it.

A system is operating in system high-security mode when all users have a security
clearance to access the information but not necessarily a need to know for all the infor-
mation processed on the system. So, unlike in the dedicated security mode, in which all
users have a need to know pertaining to all data on the system, in system high-security
mode, all users have a need to know pertaining to some of the data.

This mode also requires all users to have the highest level of clearance required by
any and all data on the system. However, even though a user has the necessary security
level to access an object, the user may still be restricted if he does not have a need to
know pertaining to that specific object.

Compartmented Security Mode

Our system has various classifications of data, and each individual has the clearance to access
all of the data, but not necessarily the need to know.

A system is operating in compartmented security mode when all users have the clear-
ance to access all the information processed by the system in a system high-security
configuration, but might not have the need to know and formal access approval. This
means that if the system is holding secret and top-secret data, all users must have at
least a top-secret clearance to gain access to this system. This is how compartmented
and multilevel security modes are different. Both modes require the user to have a valid
need to know, NDA, and formal approval, but compartmented security mode requires
the user to have a clearance that dominates (above or equal to) any and all data on the
system, whereas multilevel security mode just requires the user to have clearance to ac-
cess the data she will be working with.

In compartmented security mode, users are restricted from accessing some informa-
tion because they do not need to access it to perform the functions of their jobs and
they have not been given formal approval to access it. This would be enforced by having
on all objects security labels that reflect the sensitivity (classification level, classification

Chapter 5: Security Architecture and Design

15

category, and handling procedures) of the information. In this mode, users can access
a compartment, of data only, enforced by mandatory access controls.

The objective is to ensure that the minimum possible number of people learn of
information at each level. Compartments are categories of data with a limited number
of subjects cleared to access data at each level. Compartmented mode workstations
(CMWs) enable users to process multiple compartments of data at the same time, if
they have the necessary clearance.

Multilevel Security Mode

Our system has various classifications of data, and each individual has the clearance and need
to know to access only individual pieces of data.

A system is operating in multilevel security mode when it permits two or more clas-
sification levels of information to be processed at the same time when not all of the
users have the clearance or formal approval to access all the information being pro-
cessed by the system. So all users must have formal approval, NDA, need to know, and
the necessary clearance to access the data that they need to carry out their jobs. In this
mode, the user cannot access all of the data on the system, only what she is cleared to
access.

The Bell-LaPadula model is an example of a multilevel security model because it
handles multiple information classifications at a number of different security levels
within one system simultaneously.

Guards

Software and hardware guards allow the exchange of data between trusted (high assur-
ance) and less trusted (low assurance) systems and environments. Let’s say you are work-
ing on a MAC system (working in dedicated security mode of secret) and you need the
system to communicate with a MAC database (working in multilevel security mode,
which goes up to top secret). These two systems provide different levels of protection. As
previously stated, if a system with lower assurance could directly communicate with a
system of higher assurance, then security vulnerabilities and compromises could be intro-
duced. So, a software guard can be implemented, which is really just a front-end product
that allows interconnectivity between systems working at different security levels. (The
various types of guards available can carry out filtering, processing requests, data block-
ing, and data sanitization.) Or a hardware guard can be implemented, which is a system
with two NICs connecting the two systems that need to communicate. The guard is an
add-on piece that provides a level of strict access control between different systems.

The guard accepts requests from the system of lower assurance, reviews the request
to make sure it is allowed, and then submits the request to the system of higher assur-
ance. The goal is to ensure that information does not flow from a high security level to
a low security level in an unauthorized manner.

Guards can be used to connect different MAC systems working in different security
modes and to connect different networks working at different security levels. In many
cases, the less trusted system can send messages to the more trusted system but can only
receive acknowledgments in return. This is common when e-mail messages need to go
from less trusted systems to more trusted classified systems.

CISSP All-in-One Exam Guide

16

Security Modes Recap

Many times it is easier to understand these different modes when they are laid out
in a clear and simplistic format. Pay attention to the words in italics because they
emphasis the differences among the various modes.

Dedicated Security Mode All users must have...

e Proper clearance for all information on the system

e Formal access approval for all information on the system
e A signed NDA for all information on the system

e A valid need to know for all information on the system

e All users can access all data.
System High-Security Mode All users must have...

e Proper clearance for all information on the system

e Formal access approval for all information on the system
e A signed NDA for all information on the system

e A valid need to know for some information on the system

e All users can access some data, based on their need to know.
Compartmented Security Mode All users must have...

e Proper clearance for the highest level of data classification on the system
e Formal access approval for all information they will access on the system
e A signed NDA for all information they will access on the system
e A valid need to know for some of the information on the system

e All users can access some data, based on their need to know and formal
access approval.

Multilevel Security Mode All users must have...

e Proper clearance for all information they will access on the system

e Formal access approval for all information they will access on the system
e A signed NDA for all information they will access on the system

e Avalid need to know for some of the information on the system

e All users can access some data, based on their need to know, clearance,
and formal access approval.

Chapter 5: Security Architecture and Design

References

e “Data Protection Measures” www.tpub.com/ans/51.htm

e “Physical Model of Operations” chacs.nrl.navy.mil/publications/
CHACS/1997/jifi_web/node24.html

e Chapter 8, “Automated Information System Security” http://nsi.org/
Library/Govt/Nispom.html#link8

e National Industrial Security Program Operating Manual (NISPOM), U.S.
Department of Defense www.tscm.com/Nispom.html

Trust and Assurance

I trust that you will act properly, thus I have a high level of assurance in you.
Response: You are such a fool.

As discussed earlier in the section “Trusted Computing Base,” no system is really secure
because, with enough resources, attackers can compromise almost any system in one way
or another; however, systems can provide levels of trust. The trust level tells the customer
how much protection he can expect out of this system and the assurance that the system
will act in a correct and predictable manner in each and every computing situation.

The TCB comprises all the protection mechanisms within a system (software, hard-
ware, firmware). All of these mechanisms need to work in an orchestrated way to enforce
all the requirements of a security policy. When evaluated, these mechanisms are tested,
their designs are inspected, and their supporting documentation is reviewed and evalu-
ated. How the system is developed, maintained, and even delivered to the customer are
all under review when the trust for a system is being gauged. All of these different com-
ponents are put through an evaluation process and assigned an assurance rating, which
represents the level of trust and assurance the testing team has in the product. Customers
then use this rating to determine which system best fits their security needs.

Assurance and trust are similar in nature, but slightly different with regard to prod-
uct ratings. In a trusted system, all protection mechanisms work together to process
sensitive data for many types of uses, and will provide the necessary level of protection
per classification level. Assurance looks at the same issues but in more depth and detail.
Systems that provide higher levels of assurance have been tested extensively and have
had their designs thoroughly inspected, their development stages reviewed, and their
technical specifications and test plans evaluated. You can buy a car and you can trust it,
but you have a much deeper sense of assurance of that trust if you know how the car
was built, what it was built with, who built it, what tests it was put through, and how it
performed in many different situations.

In the Trusted Computer Security Evaluation Criteria (TCSEC), commonly known
as the Orange Book (addressed shortly), the lower assurance level ratings look at a
system'’s protection mechanisms and testing results to produce an assurance rating, but
the higher assurance level ratings look more at the system design, specifications, devel-

11

CISSP All-in-One Exam Guide

18

opment procedures, supporting documentation, and testing results. The protection
mechanisms in the higher assurance level systems may not necessarily be much differ-
ent from those in the lower assurance level systems, but the way they were designed and
built is under much more scrutiny. With this extra scrutiny comes higher levels of assur-
ance of the trust that can be put into a system.

Systems Evaluation Methods

A security evaluation examines the security-relevant parts of a system, meaning the TCB,
access control mechanisms, reference monitor, kernel, and protection mechanisms.
The relationship and interaction between these components are also evaluated. There
are different methods of evaluating and assigning assurance levels to systems. Two rea-
sons explain why more than one type of assurance evaluation process exists: methods
and ideologies have evolved over time, and various parts of the world look at computer
security differently and rate some aspects of security differently. Each method will be
explained and compared.

Why Put a Product Through Evaluation?

Submitting a product to be evaluated against the Orange Book, Information Technol-
ogy Security Evaluation Criteria, or Common Ciriteria is no walk in the park for a ven-
dor. In fact, it is a really painful and long process, and no one wakes up in the morning
thinking, “Yippee! I have to complete all of the paperwork that the National Computer
Security Center requires so my product can be evaluated!” So, before we go through
these different criteria, let's look at why anyone would even put themselves through this
process.

If you were going shopping to buy a firewall, how would you know what level of
protection each provides and which is the best product for your environment? You
could listen to the vendor’s marketing hype and believe the salesperson who informs
you that a particular product will solve all of your life problems in one week. Or you
could listen to the advice of an independent third party who has fully tested the prod-
uct and does not have any bias toward the product. If you choose the second option,
then you join a world of people who work within the realm of assurance ratings in one
form or another.

In the United States, the National Computer Security Center (NCSC) is an organi-
zation within the National Security Agency (NSA) that is responsible for evaluating
computer systems and products. It has a group, Trusted Product Evaluation Program
(TPEP), which oversees the testing by approved evaluation entities of commercial prod-
ucts against a specific set of criteria.

So, a vendor creates a product and submits it to an approved evaluation entity that
is compliant with the TPEP guidelines. The evaluation entity has groups of testers who
will follow a set of criteria (for many years it was the Orange Book but now it is moving
toward the Common Criteria) to test the vendor’s product. Once the testing is over, the
product is assigned an assurance rating. So, instead of having to trust the marketing
hype of the financially motivated vendor, you as a consumer can take the word of an
objective third-party entity that fully tested the product.

Chapter 5: Security Architecture and Design

This evaluation process is very time-consuming and expensive for the vendor. Not
every vendor puts its product through this process, because of the expense and delayed
date to get it to market. Typically, a vendor would put its product through this process
if its main customer base will be making purchasing decisions based on assurance rat-
ings. In the United States, the Department of Defense is the largest customer, so major
vendors put their main products through this process with the hope that the Depart-
ment of Defense (and others) will purchase their products.

The Orange Book

The U.S. Department of Defense developed the Trusted Computer System Evaluation
Criteria (TCSEC), which is used to evaluate operating systems, applications, and differ-
ent products. These evaluation criteria are published in a book with an orange cover,
which is called, appropriately, the Orange Book. (We like to keep things simple in secu-
rity!) Customers use the assurance rating that the criteria present as a metric when
comparing different products. It also provides direction for manufacturers so they know
what specifications to build to, and provides a one-stop evaluation process so custom-
ers do not need to have individual components within the systems evaluated.

The Orange Book is used to evaluate whether a product contains the security prop-
erties the vendor claims it does and whether the product is appropriate for a specific
application or function. The Orange Book is used to review the functionality, effective-
ness, and assurance of a product during its evaluation, and it uses classes that were de-
vised to address typical patterns of security requirements.

TCSEC provides a classification system that is divided into hierarchical divisions of
assurance levels:

A Verified protection

B Mandatory protection

C Discretionary protection
D Minimal security

Classification A represents the highest level of assurance and D represents the low-
est level of assurance.

Each division can have one or more numbered classes with a corresponding set of
requirements that must be met for a system to achieve that particular rating. The classes
with higher numbers offer a greater degree of trust and assurance. So B2 would offer
more trust than B1, and C2 would offer more trust than C1.

The criteria include four main topics—security policy, accountability, assurance,
and documentation—but these actually break down into seven different areas:

e Security policy The policy must be explicit and well defined and enforced by
the mechanisms within the system.

¢ Identification Individual subjects must be uniquely identified.

e Labels Access control labels must be associated properly with objects.

e Documentation Documentation must be provided, including test, design,
and specification documents, user guides, and manuals.

19

CISSP All-in-One Exam Guide

80

e Accountability Audit data must be captured and protected to enforce
accountability.

e Life-cycle assurance Software, hardware, and firmware must be able to
be tested individually to ensure that each enforces the security policy in an
effective manner throughout their lifetimes.

e Continuous protection The security mechanisms and the system as a whole
must perform predictably and acceptably in different situations continuously.

These categories are evaluated independently, but the rating assigned at the end
does not specify these different objectives individually. The rating is a sum total of these
items.

Each division and class incorporates the requirements of the ones below it. This
means that C2 must meet its criteria requirements and all of C1’s requirements, and B3
has its requirements to fulfill along with those of C1, C2, B1, and B2. Each division or
class ups the ante on security requirements and is expected to fulfill the requirements
of all the classes and divisions below it.

So, when a vendor submits a product for evaluation, it submits it to the NCSC. The
group that oversees the processes of evaluation is called the Trusted Products Evalua-
tion Program (TPEP). Successfully evaluated products are placed on the Evaluated
Products List (EPL) with their corresponding rating. When consumers are interested in
certain products and systems, they can check the appropriate EPL to find out their as-
signed security levels.

Isn’t the Orange Book Dead?

We are moving from the Orange Book to the Common Criteria in the industry, so
a common question is, “Why do I have to study this Orange Book stuff?” Just
because we are going through this transition, does not make the Orange Book
unimportant. It was the first evaluation criteria and was used for 20 years. Many
of the basic terms and concepts that have carried through originated in the Or-
ange Book. And we still have several products with these ratings that eventually
will go through the Common Ciriteria evaluation process.

The CISSP exam is moving steadily from the Orange Book to the Common
Criteria all the time, but don’t count the Orange Book out yet.

As a follow-on observation, many people are new to the security field. It is a
booming market, which means a flood of not-so-experienced people will be
jumping in and attempting to charge forward without a real foundation of knowl-
edge. To some readers, this book will just be a nice refresher and something that
ties already known concepts together. To other readers, many of these concepts
are new and more challenging. If a lot of this stuff is new to you—you are new to
the market. That is okay, but knowing how we got where we are today is very
beneficial because it broadens your view of deep understanding—instead of just
memorizing for an exam.

Chapter 5: Security Architecture and Design

8l

Division D: Minimal Protection
There is only one class in Division D. It is reserved for systems that have been evaluated
but fail to meet the criteria and requirements of the higher divisions.

Division C: Discretionary Protection
The C rating category has two individual assurance ratings within it, which are described
next. The higher the number of the assurance rating, the greater the protection.

CI: Discretionary Security Protection Discretionary access control is based
on individuals and/or groups. It requires a separation of users and information, and
identification and authentication of individual entities. Some type of access control is
necessary so users can ensure their data will not be accessed and corrupted by others.
The system architecture must supply a protected execution domain so privileged system
processes are not adversely affected by lower-privileged processes. There must be specific
ways of validating the system'’s operational integrity. The documentation requirements
include design documentation, which shows that the system was built to include protec-
tion mechanisms, test documentation (test plan and results), a facility manual, so com-
panies know how to install and configure the system correctly, and user manuals.

The type of environment that would require this rating is one in which users are
processing information at the same sensitivity level; thus, strict access control and au-
diting measures are not required. It would be a trusted environment with low security
concerns.

C2: Controlled Access Protection Users need to be identified individually to
provide more precise access control and auditing functionality. Logical access control
mechanisms are used to enforce authentication and the uniqueness of each individual'’s
identification. Security-relevant events are audited, and these records must be protected
from unauthorized modification. The architecture must provide resource, or object,
isolation so proper protection can be applied to the resource and any actions taken
upon it can be properly audited. The object reuse concept must also be invoked, mean-
ing that any medium holding data must not contain any remnants of information after
it is released for another subject to use. If a subject uses a segment of memory, that
memory space must not hold any information after the subject is done using it. The
same is true for storage media, objects being populated, and temporary files being cre-
ated—all data must be efficiently erased once the subject is done with that medium.

This class requires a more granular method of providing access control. The system
must enforce strict logon procedures and provide decision-making capabilities when
subjects request access to objects. A C2 system cannot guarantee it will not be compro-
mised, but it supplies a level of protection that would make attempts to compromise it
harder to accomplish.

The type of environment that would require systems with a C2 rating is one in
which users are trusted but a certain level of accountability is required. C2, overall, is
seen as the most reasonable class for commercial applications, but the level of protec-
tion is still relatively weak.

CISSP All-in-One Exam Guide

82

Division B: Mandatory Protection

Mandatory access control is enforced by the use of security labels. The architecture is
based on the Bell-LaPadula security model, and evidence of reference monitor enforce-
ment must be available.

Bl: Labeled Security Fach data object must contain a classification label and
each subject must have a clearance label. When a subject attempts to access an object,
the system must compare the subject’s and object’s security labels to ensure the re-
quested actions are acceptable. Data leaving the system must also contain an accurate
security label. The security policy is based on an informal statement, and the design
specifications are reviewed and verified.

This security rating is intended for environments that require systems to handle
classified data.

NOTE Security labels are not required until security rating B; thus, C2 does
not require security labels but Bl does.

B2: Structured Protection The security policy is clearly defined and document-
ed, and the system design and implementation are subjected to more thorough review
and testing procedures. This class requires more stringent authentication mechanisms
and well-defined interfaces among layers. Subjects and devices require labels, and the
system must not allow covert channels. A trusted path for logon and authentication
processes must be in place, which means the subject communicates directly with the
application or operating system, and no trapdoors exist. There is no way to circumvent
or compromise this communication channel. Operator and administration functions
are separated within the system to provide more trusted and protected operational
functionality. Distinct address spaces must be provided to isolate processes, and a co-
vert channel analysis is conducted. This class adds assurance by adding requirements to
the design of the system.

The type of environment that would require B2 systems is one that processes sensi-
tive data that require a higher degree of security. This type of environment would re-
quire systems that are relatively resistant to penetration and compromise.

B3: Security Domains In this class, more granularity is provided in each protec-
tion mechanism, and the programming code that is not necessary to support the secu-
rity policy is excluded. The design and implementation should not provide too much
complexity, because as the complexity of a system increases, so must the skill level of
the individuals who need to test, maintain, and configure it; thus, the overall security
can be threatened. The reference monitor components must be small enough to test
properly and be tamperproof. The security administrator role is clearly defined, and the
system must be able to recover from failures without its security level being compro-
mised. When the system starts up and loads its operating system and components, it
must be done in an initial secure state to ensure that any weakness of the system cannot
be taken advantage of in this slice of time.

Chapter 5: Security Architecture and Design

83

The type of environment that requires B3 systems is a highly secured environment
that processes very sensitive information. It requires systems that are highly resistant to
penetration.

Division A: Verified Protection

Formal methods are used to ensure that all subjects and objects are controlled with the
necessary discretionary and mandatory access controls. The design, development, imple-
mentation, and documentation are looked at in a formal and detailed way. The security
mechanisms between B3 and A1 are not very different, but the way the system was de-
signed and developed is evaluated in a much more structured and stringent procedure.

Al:Verified Design The architecture and protection features are not much different
from systems that achieve a B3 rating, but the assurance of an A1 system is higher than a
B3 system because of the formality in the way the A1 system was designed, the way the
specifications were developed, and the level of detail in the verification techniques. For-
mal techniques are used to prove the equivalence between the TCB specifications and the
security policy model. A more stringent change configuration is put in place with the
development of an A1 system, and the overall design can be verified. In many cases, even
the way in which the system is delivered to the customer is under scrutiny to ensure there
is no way of compromising the system before it reaches its destination.

The type of environment that would require Al systems is the most secure of se-
cured environments. This type of environment deals with top-secret information and
cannot adequately trust anyone using the systems without strict authentication, restric-
tions, and auditing.

NOTE TCSEC addresses confidentiality, but not integrity. Functionality of
the security mechanisms and the assurance of those mechanisms are not
evaluated separately, but rather are combined and rated as a whole.

References

¢ Trusted Computer System Evaluation Criteria (Orange Book), U.S.
Department of Defense (Dec. 26, 1985) www.boran.com/security/
tcsec.html

e Lecture notes for Cryptography and Network Security, Part 7, “Trusted
Computer Systems,” William Stallings, lecturer, Dr. Lawrie Brown,
author www. williamstallings.com/Extras/Security-Notes/lectures/
trusted.html

The Orange Book and the Rainbow Series

Why are there so many colors in the rainbow?
Response: Because there are so many product types that need to be evaluated.

The Orange Book mainly addresses government and military requirements and ex-
pectations for their computer systems. Many people within the security field have
pointed out several deficiencies in the Orange Book, particularly when it is being

CISSP All-in-One Exam Guide

84

applied to systems that are to be used in commercial areas instead of government orga-
nizations. The following list summarizes a majority of the troubling issues that security
practitioners have expressed about the Orange Book:

o [t looks specifically at the operating system and not at other issues like
networking, databases, and so on.

e [t focuses mainly on one attribute of security—confidentiality—and not on
integrity and availability.

e [t works with government classifications and not the protection classifications
commercial industries use.

e [t has a relatively small number of ratings, which means many different
aspects of security are not evaluated and rated independently.

The Orange Book places great emphasis on controlling which users can access a
system and virtually ignores controlling what those users do with the information once
they are authorized. Authorized users can, and usually do, cause more damage to data
than outside attackers. Commercial organizations have expressed more concern about
the integrity of their data, whereas military organizations stress that their top concern
is confidentiality. Because of these different goals, the Orange Book is a better evalua-
tion tool for government and military systems.

Because the Orange Book focuses on the operating system, many other areas of se-
curity were left out. The Orange Book provides a broad framework for building and
evaluating trusted systems, but it leaves many questions about topics other than operat-
ing systems unanswered. So, more books were written to extend the coverage of the
Orange Book into other areas of security. These books provide detailed information
and interpretations of certain Orange Book requirements and describe the evaluation
processes. These books are collectively called the Rainbow Series because the cover of
each is a different color.

For an explanation of each book and its usage, please refer to the following ref-
erences.

References

e Rainbow Series www.csrc.ncsl.nist.gov/secpubs/rainbow/

e Rainbow Series and related documents from the Federation of American
Scientists www.fas.org/irp/nsa/rainbow.htm

The Red Book

The Orange Book addresses single-system security, but networks are a combination of
systems, and each network needs to be secure without having to fully trust each and
every system connected to it. The Trusted Network Interpretation (TNI), also called the
Red Book because of the color of its cover, addresses security evaluation topics for net-
works and network components. It addresses isolated local area networks and wide
area internetwork systems.

Chapter 5: Security Architecture and Design

Like the Orange Book, the Red Book does not supply specific details about how to
implement security mechanisms. Instead, it provides a framework for securing different
types of networks. A network has a security policy, architecture, and design, as does an
operating system. Subjects accessing objects on the network need to be controlled,
monitored, and audited. In a network, the subject could be a workstation and an object
could be a network service on a server.

The Red Book rates confidentiality of data and operations that happen within a
network and the network products. Data and labels need to be protected from unau-
thorized modification, and the integrity of information as it is transferred needs to be
ensured. The source and destination mechanisms used for messages are evaluated and
tested to ensure modification is not allowed.

Encryption and protocols are components that provide a lot of the security within
a network, and the Red Book measures their functionality, strength, and assurance.

The following is a brief overview of the security items addressed in the Red Book:

e Communication integrity

e Authentication Protects against masquerading and playback attacks.
Mechanisms include digital signatures, encryption, timestamp, and
passwords.

e Message integrity Protects the protocol header, routing information,
and packet payload from being modified. Mechanisms include message
authentication and encryption.

e Nonrepudiation Ensures that a sender cannot deny sending a message.
Mechanisms include encryption, digital signatures, and notarization.

¢ Denial-of-Service prevention

e Continuity of operations Ensures that the network is available even if
attacked. Mechanisms include fault-tolerant and redundant systems and
the capability to reconfigure network parameters in case of an emergency.

e Network management Monitors network performance and identifies
attacks and failures. Mechanisms include components that enable network
administrators to monitor and restrict resource access.

e Compromise protection

e Data confidentiality Protects data from being accessed in an unauthorized
method during transmission. Mechanisms include access controls, encryption,
and physical protection of cables.

e Traffic flow confidentiality Ensures that unauthorized entities are not
aware of routing information or frequency of communication via traffic
analysis. Mechanisms include padding messages, sending noise, or sending
false messages.

e Selective routing Routes messages in a way to avoid specific threats.
Mechanisms include network configuration and routing tables.

85

CISSP All-in-One Exam Guide

86

Assurance is derived by comparing how things actually work to a theory of how things
should work. Assurance is also derived by testing configurations in many different sce-
narios, evaluating engineering practices, and validating and verifying security claims.

TCSEC was introduced in 1985 and retired in December 2000. It was the first me-
thodical and logical set of standards developed to secure computer systems. It was
greatly influential to several countries that based their evaluation standards on the TC-
SEC guidelines. TCSEC was finally replaced with the Common Criteria.

Information Technology Security

Evaluation Criteria

The Information Technology Security Evaluation Criteria (ITSEC) was the first attempt at
establishing a single standard for evaluating security attributes of computer systems and
products by many European countries. The United States looked to the Orange Book and
Rainbow Series, and Europe employed ITSEC to evaluate and rate computer systems.
(Today, everyone is migrating to the Common Criteria, explained in the next section.)

ITSEC evaluates two main attributes of a system'’s protection mechanisms: function-
ality and assurance. When the functionality of a system’s protection mechanisms is
being evaluated, the services that are provided to the subjects (access control mecha-
nisms, auditing, authentication, and so on) are examined and measured. Protection
mechanism functionality can be very diverse in nature because systems are developed
differently just to provide different functionality to users. Nonetheless, when function-
ality is evaluated, it is tested to see if the system'’s protection mechanisms deliver what
its vendor says they deliver. Assurance, on the other hand, is the degree of confidence
in the protection mechanisms, and their effectiveness and capability to perform consis-
tently. Assurance is generally tested by examining development practices, documenta-
tion, configuration management, and testing mechanisms.

It is possible for two systems’ protection mechanisms to provide the same type of
functionalities and have very different assurance levels. This is because the underlying
mechanisms providing the functionality can be developed, engineered, and imple-
mented differently. System A and System B may have protection mechanisms that pro-
vide the same type of functionality for authentication, in which case both products
would get the same rating for functionality. But System A’s developers could have been
sloppy and careless when developing their authentication mechanism, in which case
their product would receive a lower assurance rating. ITSEC actually separates these two
attributes (functionality and assurance) and rates them separately, whereas TCSEC
clumps them together and assigns them one rating (D through A1).

The following list shows the different types of functionalities and assurance items
tested during an evaluation.

e Security functional requirements
e Identification and authentication
e Audit

e Resource utilization

e Trusted paths/channels

Chapter 5: Security Architecture and Design

87

e User data protection

e Security management

e Product access

e Communications

e Privacy

e Protection of the product’s security functions
¢ Cryptographic support

e Security assurance requirements

e Guidance documents and manuals
e Configuration management

e Vulnerability assessment

e Delivery and operation

e Life-cycle support

e Assurance maintenance

e Development

e Testing

Consider again our example of two systems that provide the same functionality
(pertaining to the protection mechanisms) but have very different assurance levels. Us-
ing the TCSEC approach, the difference in assurance levels will be hard to distinguish
because the functionality and assurance level are rated together. Under the ITSEC ap-
proach, the functionality is rated separately from the assurance, so the difference in
assurance levels will be more noticeable. In the ITSEC criteria, classes F1 to F10 rate the
functionality of the security mechanisms, whereas EO to E6 rate the assurance of those
mechanisms.

So a difference between ITSEC and TCSEC is that TCSEC bundles functionality and
assurance into one rating, whereas ITSEC evaluates these two attributes separately. The
other differences are that ITSEC was developed to provide more flexibility than TCSEC,
and ITSEC addresses integrity, availability, and confidentiality, whereas TCSEC address-
es only confidentiality. ITSEC also addresses networked systems, whereas TCSEC deals
with stand-alone systems.

Table 5-2 is a general mapping of the two evaluation schemes to show you their
relationship to each other.

As you can see, a majority of the ITSEC ratings can be mapped to the Orange Book
ratings, but then ITSEC took a step farther and added F6 through F10 for specific needs
consumers might have that the Orange Book does not address.

ITSEC is criteria for operating systems and other products, which it refers to indi-
vidually as the target of evaluation (TOE). So if you are reading literature discussing the
ITSEC rating of a product and it states the TOE has a rating of F1 and E5, you know the
TOE is the product that was evaluated and that it has a low functionality rating and a
high assurance rating.

CISSP All-in-One Exam Guide

88

ITSEC TCSEC

EO =D

FI +EI =Cl

F2 + E2 =C2

F3 +E3 = BI

F4 + E4 =B2

F5 + E5 =B3

F5 + E6 =Al

Fé6 = Systems that provide high integrity

F7 = Systems that provide high availability

F8 = Systems that provide data integrity during communication
Fo = Systems that provide high confidentiality (like cryptographic devices)
F10 = Networks with high demands on confidentiality and integrity

Table 5-2 ITSEC and TCSEC Mapping

The ratings pertain to assurance, which is the correctness and effectiveness of the
security mechanism, and functionality. Functionality is viewed in terms of the system's
security objectives, security functions, and security mechnisms. The following are some
examples of the functionalities that are tested: identification and authentication, access
control, accountability, auditing, object reuse, accuracy, reliability of service, and data
exchange.

References

e (Criteria and Methods of Evaluations of Information Systems www.cordis
Ju/infosec/src/crit. htm

e ITSEC home page www.iwar.org.uk/comsec/resources/standards/itsec.htm

Common Criteria

“TCSEC is too hard, ITSEC is too soft, but the Common Criteria is just right,” said the
baby bear.

The Orange Book and the Rainbow Series provide evaluation schemes that are too
rigid for the business world. ITSEC attempted to provide a more flexible approach by
separating the functionality and assurance attributes and considering the evaluation of
entire systems. However, this flexibility added complexity because evaluators could mix
and match functionality and assurance ratings, which resulted in too many classifica-
tions to keep straight. Because we are a species that continues to try to get it right, the
next attempt for an effective and usable evaluation criteria was the Common Criteria.

Chapter 5: Security Architecture and Design

In 1990, the International Organization for Standardization (ISO) identified the
need of international standard evaluation criteria to be used globally. The Common
Criteria project started in 1993 when several organizations came together to combine
and align existing and emerging evaluation criteria (TCSEC, ITSEC, Canadian Trusted
Computer Product Evaluation Criteria [CTCPEC], and the Federal Criteria). The Com-
mon Criteria was developed through a collaboration among national security stan-
dards organizations within the United States, Canada, France, Germany, the United
Kingdom, and the Netherlands.

The benefit of having a globally recognized and accepted set of criteria is that it
helps consumers by reducing the complexity of the ratings and eliminating the need to
understand the definition and meaning of different ratings within various evaluation
schemes. This also helps manufacturers, because now they can build to one specific set
of requirements if they want to sell their products internationally, instead of having to
meet several different ratings with varying rules and requirements.

The Orange Book evaluates all systems by how they compare to the Bell-LaPadula
model. The Common Criteria provides more flexibility by evaluating a product against
a protection profile, which is structured to address a real-world security need. So while
the Orange Book says, “Everyone march in this direction in this form using this path,”
the Common Criteria asks, “Okay, what are the threats we are facing today and what are
the best ways of battling them?”

Under the Common Criteria model, an evaluation is carried out on a product and
is assigned an Evaluation Assurance Level (EAL). The thorough and stringent testing
increases in detailed-oriented tasks as the assurance levels increase. The Common Cri-
teria has seven assurance levels. The range is from EAL1, where functionality testing
takes place, to EAL7, where thorough testing is performed and the system design is
verified. The different EAL packages are listed next:

e EAL1 Functionally tested

e EAL2 Structurally tested

e EAL3 Methodically tested and checked

e EAL4 Methodically designed, tested, and reviewed
e EAL5 Semiformally designed and tested

e EAL6 Semiformally verified design and tested

e EAL7 Formally verified design and tested

NOTE When a system is “formally verified” this means it is based on a model
that can be mathematically proven.

The Common Criteria uses protection profiles in its evaluation process. This is a
mechanism used to describe a real-world need of a product that is not currently on the
market. The protection profile contains the set of security requirements, their meaning

89

CISSP All-in-One Exam Guide

90

and reasoning, and the corresponding EAL rating that the intended product will require.
The protection profile describes the environmental assumptions, the objectives, and the
functional and assurance level expectations. Each relevant threat is listed along with how
it is to be controlled by specific objectives. The protection profile also justifies the assur-
ance level and requirements for the strength of each protection mechanism.

The protection profile provides a means for a consumer, or others, to identify spe-
cific security needs; this is the security problem to be conquered. If someone identifies
a security need that is not currently being addressed by any current product, that person
can write a protection profile describing the product that would be a solution for this
real-world problem. The protection profile goes on to provide the necessary goals and
protection mechanisms to achieve the required level of security, as well as a list of
things that could go wrong during this type of system development. This list is used by
the engineers who develop the system, and then by the evaluators to make sure the
engineers dotted every i and crossed every t.

The Common Criteria was developed to stick to evaluation classes but also to retain
some degree of flexibility. Protection profiles were developed to describe the function-
ality, assurance, description, and rationale of the product requirements.

Like other evaluation criteria before it, the Common Criteria works to answer two
basic questions about products being evaluated: what does its security mechanisms do
(functionality), and how sure are you of that (assurance)? This system sets up a frame-
work that enables consumers to clearly specify their security issues and problems; de-
velopers to specify their security solution to those problems; and evaluators to
unequivocally determine what the product actually accomplishes.

A protection profile contains the following five sections:

e Descriptive elements Provides the name of the profile and a description of
the security problem to be solved.

e Rationale Justifies the profile and gives a more detailed description of the
real-world problem to be solved. The environment, usage assumptions, and
threats are illustrated along with guidance on the security policies that can be
supported by products and systems that conform to this profile.

¢ Functional requirements Establishes a protection boundary, meaning the
threats or compromises within this boundary to be countered. The product
or system must enforce the boundary established in this section.

e Development assurance requirements Identifies the specific requirements
the product or system must meet during the development phases, from design
to implementation.

e Evaluation assurance requirements Establishes the type and intensity of the
evaluation.

Chapter 5: Security Architecture and Design

9l

The evaluation process is just one leg of determining the functionality and assur-
ance of a product. Once a product achieves a specific rating, it only applies to that
particular version and only to certain configurations of that product. So if a company
buys a firewall product because it has a high assurance rating, the company has no
guarantee the next version of that software will have that rating. The next version will
need to go through its own evaluation review. If this same company buys the firewall
product and installs it with configurations that are not recommended, the level of secu-
rity the company was hoping to achieve can easily go down the drain. So, all of this
rating stuff is a formalized method of reviewing a system being evaluated in a lab.
When the product is implemented in a real environment, factors other than its rating
need to be addressed and assessed to ensure it is properly protecting resources and the
environment.

NOTE When a product is assigned an assurance rating, this means it has the
potential of providing this level of protection.The customer has to properly
configure the product to actually obtain this level of security. The vendor
should provide the necessary configuration documentation, and it is up

to the customer to keep the product properly configured at all times.

References

e Computer Security Resource Center (CSRC) Common Criteria for IT
Security Evaluation csrc.nist.gov/cc/

¢ Common Criteria www.commoncriteriaportal.org/public/files/
ccintroduction.pdf

e Common Criteria overview, Rycombe Consulting www.rycombe.com/cc.htm

Certification vs. Accreditation

We have gone through the different types of evaluation criteria that a system can be ap-
praised against to receive a specific rating. This is a very formalized process, following
which the evaluated system or product will be placed on an EPL indicating what rating
it achieved. Consumers can check this listing and compare the different products and
systems to see how they rank against each other in the property of protection. However,
once a consumer buys this product and sets it up in their environment, security is not
guaranteed. Security is made up of system administration, physical security, installa-
tion, and configuration mechanisms within the environment, and other security issues.
To fairly say a system is secure, all of these items must be taken into account. The rating
is just one piece in the puzzle of security.

CISSP All-in-One Exam Guide

9

Different Components of the Common Criteria
The different components of the Common Ciriteria are shown and described next:

Protection Request for a specific
profile security solution
Target of
&et The product
evaluation
Security Vendor’s explanation of functionality
target and assurance components
Security functionality Security assurance Different fa,m'hes of
. ? the classes in
requirements requirements -
requirement sets
A 4
Security
target Test and evaluate product
against claimed
¢ specifications

Evaluation assurance
level assigned

e Protection profile Description of a needed security solution.

e Target of evaluation Product proposed to provide a needed security
solution.

e Security target Vendor’s written explanation of the security functionality
and assurance mechanisms that meet the needed security solution—in
other words, “This is what our product does and how it does it.”

e Packages—EALs Functional and assurance requirements are bundled
into packages for reuse. This component describes what must be met to
achieve specific EAL ratings.

Certification

How did you certify this product?
Response: It came in a very pretty box. Let’s keep it.

Certification is the comprehensive technical evaluation of the security components
and their compliance for the purpose of accreditation. A certification process may use

Chapter 5: Security Architecture and Design

93

safeguard evaluation, risk analysis, verification, testing, and auditing techniques to as-
sess the appropriateness of a specific system. For example, suppose Dan is the security
officer for a company that just purchased new systems to be used to process its confiden-
tial data. He wants to know if these systems are appropriate for these tasks and if they are
going to provide the necessary level of protection. He also wants to make sure they are
compatible with his current environment, do not reduce productivity, and do not open
doors to new threats—basically, he wants to know if these are the right products for his
company. He could pay a company that specializes in these matters to perform the nec-
essary procedures to certify the systems, or it can be carried out internally. The evaluation
team will perform tests on the software configurations, hardware, firmware, design, im-
plementation, system procedures, and physical and communication controls.

The goal of a certification process is to ensure that a system, product, or network is
right for the customer’s purposes. Customers will rely upon a product for slightly differ-
ent reasons, and environments will have various threat levels. So a particular product is
not necessarily the best fit for every single customer out there. (Of course, vendors will try
to convince you otherwise.) The product has to provide the right functionality and secu-
rity for the individual customer, which is the whole purpose of a certification process.

The certification process and corresponding documentation will indicate the good, the
bad, and the ugly about the product and how it works within the given environment. Dan
will take these results and present them to his management for the accreditation process.

Accreditation

Accreditation is the formal acceptance of the adequacy of a system's overall security and
functionality by management. The certification information is presented to manage-
ment, or the responsible body, and it is up to management to ask questions, review the
reports and findings, and decide whether to accept the product and whether any correc-
tive action needs to take place. Once satisfied with the system'’s overall security as pre-
sented, management makes a formal accreditation statement. By doing this, manage-
ment is stating it understands the level of protection the system will provide in its cur-
rent environment and understands the security risks associated with installing and
maintaining this system.

No More Pencil Whipping

Many organizations are taking the accreditation process more seriously than they
did in the past. Unfortunately, sometimes when a certification process is completed
and the documentation is sent to management for review and approval, manage-
ment members just blindly sign the necessary documentation without really un-
derstanding what they are signing. Accreditation means management is accepting
the risk that is associated with allowing this new product to be introduced into the
organization’s environment. When large security compromises take place, the buck
stops at the individual who signed off on the offending item. So as these manage-
ment members are being held more accountable for what they sign off on and as
more regulations make executives personally responsible for security, the pencil
whipping of accreditation papers is decreasing, but has not stopped.

CISSP All-in-One Exam Guide

94

NOTE Certification is a technical review that assesses the security
mechanisms and evaluates their effectiveness. Accreditation is management’s
official acceptance of the information in the certification process findings.

Because software, systems, and environments continually change and evolve, the
certification and accreditation should also continue to take place. Any major addition
of software, changes to the system, or modification of the environment should initiate
a new certification and accreditation cycle.

Open vs. Closed Systems

Computer systems can be developed to integrate easily with other systems and products
(open systems) or can be developed to be more proprietary in nature and work with
only a subset of other systems and products (closed systems). The following sections
describe the difference between these approaches.

Open Systems

I want to be able to work and play well with others.
Response: But no one wants to play with you.

Systems described as open are built upon standards, protocols, and interfaces that
have published specifications, which enable third-party vendors to develop add-on
components and devices. This type of architecture provides interoperability between
products created by different vendors. This interoperability is provided by all the ven-
dors involved who follow specific standards and provide interfaces that enable each
system to easily communicate with other systems and allow add-ons to hook into the
system easily.

A majority of the systems in use today are open systems. The reason an administrator
can have Windows XP, Windows 2000, Macintosh, and Unix computers communicating
easily on the same network is because these platforms are open. If a software vendor cre-
ates a closed system, it is restricting its potential sales to proprietary environments.

NOTE In Chapter |1, we will look at the standards that support
interoperability, including CORBA, DCOM, J2EE, and more.

Closed Systems

I only want to play with you and him.
Response: Just play with him.

Systems referred to as closed use an architecture that does not follow industry stan-
dards. Interoperability and standard interfaces are not employed to enable easy com-
munication between different types of systems and add-on features. Closed systems are
proprietary, meaning the system can only communicate with like systems.

A closed architecture can provide more security to the system because it does not
have as many doorways in, and it operates in a more secluded environment than open

Chapter 5: Security Architecture and Design

95

environments. Because a closed system is proprietary, there are not as many tools to
thwart the security mechanisms and not as many people who understand its design,
language, and security weaknesses and thus exploit them. A majority of the systems
today are built with open architecture to enable them to work with other types of sys-
tems, easily share information, and take advantage of the functionality that third-party
add-ons bring. However, this opens the doors to more hacks, cracks, and attacks. You
can’t have your cake and eat it too it seems.

Enterprise Architecture

Up until now we have covered many operating system and application items and con-
cepts. We started with the architecture of a system and went through the many compo-
nents that must be securely built in to help ensure the necessary level of protection re-
quired from it. The system security architecture is a high-level design that works as a
framework. The architecture lays out what needs to be in place to ensure that the sys-
tem’s security policy and protection level are met. Great, so what is an enterprise secu-
rity architecture?

Organizations have a choice when attempting to secure their environment as a
whole. They can just toss in products here and there, which are referred to as point solu-
tions or stovepipe solutions, and hope the ad hoc approach magically works in a man-
ner that secures the environment evenly and covers all of the enterprise’s vulnerabilities.
Or the organization can take the time to understand the environment, understand the
security requirements of the business and environment, and lay out an overarching
framework and strategy that maps the two together. Most organizations choose option
one, which is the “constantly putting out fires” approach. This is a lovely way to keep
stress levels elevated, security requirements unmet, and to let confusion and chaos be
the norm.

The second approach would be to define an enterprise security architecture, allow
it to be the guide when implementing solutions to ensure needs are met, provide stan-
dard protection across the environment, and reduce the amount of security surprises
the organization will run into. Although implementing an enterprise security architec-
ture will not necessarily promise pure utopia, it does tame the chaos and gets the secu-
rity staff, and organization, into a more proactive and mature mindset when dealing
with security as a whole.

An enterprise security architecture defines the information security strategy that con-
sists of layers of policy, standards, solutions, and procedures and the way they are linked
across an enterprise strategically, tactically, and operationally. This is different than the
infrastructure architecture. Infrastructure is the underlying technology and hardware
needed to support the enterprise security architecture. So basically you can have an in-
frastructure (switches, cables, routers, nodes, and so on), but it requires the software,
people, and processes to work together in a cohesive and secure manner to have an
actual enterprise architecture. Besides security, this type of architecture allows organiza-
tions to better achieve interoperability, integration, ease-of-use, standardization, and
governance.

CISSP All-in-One Exam Guide

96

How do you know if an organization does not have an enterprise security architec-
ture in place? If the answer is “yes” to most of the following questions, this type of ar-
chitecture is not in place.

e Does identifying new vulnerabilities and exposures take more than 15 days?

e When user access requirements increase because of business needs, does the
security or network administrator just modify the access controls without the
user manager’s documented approval?

e When rolling out a new product, do unexpected interoperability issues pop up
which require more time and money to fix?

e Do many “one-off” efforts take place instead of following standardized
procedures when security issues arise?

e Are the business unit managers unaware of their security responsibilities and
how their responsibilities map to legal and regulatory requirements?

e [s “sensitive data” defined in a policy, but the necessary controls are not fully
implemented and monitored?

e Are stovepipe (point) solutions implemented instead of enterprise-wide
solutions?

e Are the same expensive mistakes continuing to take place?

e [s there a continual disconnect between senior management and the
security staff?

e [s security governance currently unavailable because the enterprise is not
viewed or monitored in a standardized and holistic manner?

e Are business decisions made without taking security into account?

e Are security personnel usually putting out fires with no real time to look at
and develop strategic approaches?

e Are more and more security personnel seeking out shrinks and going on anti-
depressant or anti-anxiety medication?

If many of these answers are “yes,” no useful architecture is in place. Now, the fol-
lowing is something very interesting the author has seen over several years. Most orga-
nizations have the problems listed earlier and yet they focus on each item as if they
were unconnected. What the CSO, CISO, and/or security administrator do not under-
stand is that these are just symptoms of a treatable disease. The “treatment” is to put one
person in charge of a team that develops a phased-approach enterprise security archi-
tecture rollout plan. The goals are to shift from technology-oriented to business-centric
security processes, link administrative, technical, and physical controls to properly
manage risk, and integrate these processes into the IT infrastructure, business processes,
and the organization’s culture. Following this, you can move on to implementing world
peace, solving global hunger, and making all politicians tell the truth.

The main reason organizations do not develop and roll out an enterprise security
architecture is because they do not fully understand what one is and it seems like an

Chapter 5: Security Architecture and Design

overwhelming task. Fighting fires is more understandable and straightforward, so many
companies stay with this familiar approach.

If you'll remember, in Chapter 3 we went through how to set up a security program
where the following outline of tasks was provided:

e Plan and Organize

Establish management commitment
Establish oversight steering committee
Assess business drivers

Carry out a threat profile on the organization
Carry out a risk assessment

Develop security architectures at an organizational, application, network,
and component level

Identify solutions per architecture level

Obtain management approval to move forward

e Implement

Assign roles and responsibilities

Develop and implement security policies, procedures, standards, baselines,
and guidelines

Identify sensitive data at rest and in transit
Implement the following blueprints:

e Asset identification and management
e Risk management

e Vulnerability management

e Compliance

e Identity management and access control
e Change control

e Software development life cycle

e Business continuity planning

e Awareness and training

e Physical security

e Incident response

Implement solutions (administrative, technical, physical) per blueprint

91

CISSP All-in-One Exam Guide

98

e Develop auditing and monitoring solutions per blueprint
e Establish goals, service level agreements (SLAs), and metrics per blueprint
e Operate and Maintain

e Follow procedures to ensure all baselines are met in each implemented
blueprint

e Carry out internal and external audits
e (Carry out tasks outlined per blueprint
e Manage service level agreements per blueprint

e Monitor and Evaluate

Review logs, audit results, collected metric values, and SLAs per blueprint

Assess goal accomplishments per blueprint

e Carry out quarterly meetings with steering committee

Develop improvement steps and integrate into the Plan and Organize phase

NOTE The CISSP exam may use the term “plan” instead of blueprint.

These are also the basic steps of setting up an enterprise security architecture, be-
cause a security program and the security architecture must follow the same model. The
security program is often considered the administrative components, as in policies,
standards, risk management, personnel security, data classification, and so on. Basi-
cally, every main concept covered in Chapter 3 is a component of a security program.
An enterprise security architecture goes deeper than the security program and provides
more granularity. For example, if the security policy dictates that network access control
must be implemented and enforced, the architecture would cover the network sche-
matic, network zones based on trust levels and business needs, external connections,
security mechanisms, tools, processes, and roles involved at each level. The architecture
works its way down from the policy level to the component level.

As an analogy, let’s say Shannon tells a builder she wants a ranch style house, with
four bedrooms, whose size should be 2500 square feet. This is a high-level description
(policy) and the builder is not going to just wing it and see if he can build this from
scratch. The builder will use a blueprint to follow (architecture), which will provide
more detailed requirements that must be met to fulfill Shannon'’s request.

Almost all robust enterprise security architectures work with the structure provided
by the Zachman Architecture Framework in one way or another. Table 5-3 shows you
the makeup of this architectural framework. (In order to see the full framework, go to
www.zifa.com.) The Zachman framework has been around for many years and has
been used by many organizations to build or better define their business environment.
This framework is not security-oriented, but it is a good template to work with because
it offers direction on how to understand an actual enterprise in a modular fashion.

Security Architecture and Design

Chapter 5

99

24n32331YdJy 3sludualug 4oy JJoMaWel] uewyde7 §-§ d|qeL
ADIOAA o
sadue)sul
A3o1e3s 39 3|npayds “39 uopnezjued.io “39 Sdomiau <89 uonduny “89 eyep “8'9 asiadaajua Suluonndung 9
Jouswaldw) e
uoneoydads uonuyep aJn3d931ydIe 24n3931ydIe uoneandyuod
9|1 “89 Suiwn “8-9 Ayandas <89 suomiau 39 weJa3oud “82 uonjulysp eyep “39 jusuodwo) g
J9p|Ing e
24MdNAS sJn1da31ydIe EXLEREMIVRY] uSisap [opow soisAyd
udisap ajnJ 82 jouod “83 uoneussa.ud “89 A3ojouydaa 39 wiansAs “89 eyep [ed1shyd 89 [opow A3ojouyda) ¥
aJn1dau1ydIe [JumdaYydIe
|opow 24mdNAs ERLIRET] wia1shs [JndaIydIe |opow Jauisa e
a|nJ ssauisnq <82 Buissaooud <82 uewny <89 painqLisip <39 uonedijdde “8-a eyep [e2180] “3'9 3130] [opows wiaysAg €
|spow JUMQO e
a|npayds [spow |apow sonsiSo) |apow ssadoud diysuoneai-Anus sydaduod
ue|d ssauisnq “8-2 Jo1sew “89 MO|plIOM 32 ssauisnq “8'9 ssauisng “8'9 Jo onuewss “39 |9pow ssauisng T
ssauisnq
ssauisnq ay3 03 3uesiodwy sajeJado ssauisnq sw.opiad ssauisnq
sal3aea3s/5|RO3 ay1 o1 uedyudis suonezjued.io ay3 Yaiym ui ssauisng a3 ay1 01 aueasodw Jauueld e
ssauisnq Jo sI SIUBAD JO 3SI1 jo s Suoned0| 4O IsI sassadoud Jo 1si] s3uiys jo s Arepunoq 3x3j3u0d adodg |
(uorzearzon) (duny) (3idoad) (Giiom3zaN) (uonduni) (e3eq)
Aum uLaym oym IYM MOH Jeym FEY (Y| FET-X 00

CISSP All-in-One Exam Guide

100

NOTE The Zachman framework is used as a model for robust security
architectures, which means it deals with many components throughout the
organization. Many people are familiar with technical security architectures,
which just deal with a network and the systems within that network.These
are two totally different things. The robust security architecture encompasses
the technical architecture and much more, as you can see in Table 5-3.

The Zachman framework is a two-dimensional model that uses six basic communi-
cation interrogatives (What, How, Where, Who, When, and Why) intersecting with dif-
ferent levels (Planner, Owner, Designer, Builder, Implementer, and Worker) to give a
holistic view of the enterprise. This framework was developed in the 1980s and is based
on the principles of classical business architecture that contain rules that govern an
ordered set of relationships.

Based on the author’s experience, most technical people have a negative visceral
reaction to models like this. They feel it's too much work, that it’s a lot of fluff, is not
directly relevant, and so on. If you handed the same group of people a network sche-
matic with firewalls, IDSs, and VPNs, they would say, “Now were talking about securi-
ty!” This is because they are technology focused and they do not understand all the
other components of security, which are just as (or more) important than technology.

SABSA

A group developed the Sherwood Applied Business Security Architecture (SABSA), as shown in
the following table, which is based on the Zachman framework. When building a security archi-
tecture, you can visit www.sabsa-institute.org/home.aspx to learn more about this approach.
While the SABSA is not exam-oriented, the Zachman framework is. So you might want to dig into
this model after your CISSP exam.

Assets (What) Motivation (Why) Process (How) People (Who) Location Time (When)
(Where)
Contextual The business Business risk model Business process Business Business geography Business time
model organization and dependencies
relationships
Conceptual Business attributes Control objectives Security strategies Security entity Security domain Security-
profile and architectural model and trust model related
layering framework lifetimes and
deadlines
Logical Business Security policies Security services Entity schema Security domain Security
information model and privilege definitions and processing
profiles associations cycle
Physical Business data Security rules, practices, Security Users, Platform Control
model and procedures mechanisms applications, and and network structure
user interface infrastructure execution
Component Detailed data Security standards Security products Identities, Processes, nodes, Security step
structures and tools functions, actions, addresses, and timing and
and ACLs protocols sequencing
Operational Assurance Operation risk Security service Application and Security of sites, Security
of operation management management and user management networks,and operations
continuity support and support platforms schedule

Chapter 5: Security Architecture and Design

101

Working at the enterprise level requires different thinking than working just at the
system or technical level. Not only do the solutions need to apply to the whole enter-
prise in a standardized manner, they need to map to business needs. For example, when
thinking about access control—instead of just thinking about Kerberos, domain con-
trollers, ACLs, and credentials—you must also consider what regulations and laws the
company must comply with. If the company must comply with Sarbanes-Oxley (SOX),
for example, the company needs many of these processes documented and access must
be approved by managers. This may require identity management solutions instead of
just depending upon Microsoft’s domain authentication technology.

When an enterprise security architecture is being developed, the following items
must be understood and followed: strategic alignment, process enhancement, business
enablement, and security effectiveness.

Strategic alignment means the business drivers and the regulatory and legal require-
ments are being met by the security architecture. The current security posture must be
understood. This means an enterprise risk assessment was carried out so the company
could understand its current threats and their ability to deal with these threats. There
should be a consensus regarding the vulnerabilities and threats within the organiza-
tion. It also means an acceptable risk level was set based on the company’s risk toler-
ance. Great, but what does this really mean? Well, strategic alignment means, “What
assets do we have to protect?”, “How well are our security initiatives tied to business
needs?”, “What is the definition of ‘enough security’?”, and “Is senior management on
board with all of this?”

The result of these efforts is to come up with an agreed-upon current risk profile
and a desired profile. A three-year security plan should be developed that outlines how
the organization will get to, and achieve, the desired profile, and also should detail a
phased approach regarding how the full security enterprise will be built.

NOTE The preceding information may seem very obvious as to what needs
to first take place, but unfortunately many companies just start plugging in
firewalls, configuring ACLs, and rolling out encryption solutions without setting
up an overall plan. It gets everybody busy, but often they’re marching down
different paths with no agreed-upon goal for everyone to be working towards.

A few other items approached at the strategic stage are:

e Stakeholders and their requirements are defined
e Owners and custodians are identified and assigned responsibilities
e Responsibility, accountability, and authority are defined and assigned

e Someone buys a beer keg to get through the rest of the phases

Senior management must be actively involved at this stage and provide the neces-
sary resources and support. Without management support, the effort will limp along
with no real success in the end.

CISSP All-in-One Exam Guide

102

When looking at the business enablement part of the architecture, we need to re-
mind ourselves that companies are in business to make money. Companies and orga-
nizations do not exist for the sole purpose of being secure. Security cannot stand in the
way of business processes, but should be implemented to better enable them. Many of
the critical business processes deal with end-to-end transaction integrity and are com-
monly a large focus when security must enable business activities.

Business enablement means the core business processes are integrated into the se-
curity operating model—they are standards-based and follow a risk tolerance-based
criteria. What does this mean in the real world? Let’s say a company’s bean counters
have figured out that if they allow the customer service and support staff to work from
home, the company would save a lot of money on office rent, utilities, and overhead—
plus, their insurance is cheaper. The company could move into this new model with the
use of VPN, firewalls, content filtering, and so on. If a financial institution wants to
allow their customers the ability to view bank account information and carry out mon-
ey transfers, it can offer this service if the correct security mechanisms were put in place.
Security should help the organization thrive by providing the mechanisms to do new
things safely.

The process enhancement piece can be quite beneficial to an organization if it takes
advantage of this capability. When an organization is serious about securing their envi-
ronment, it means they will have to take a close look at many of the business processes
that take place on an ongoing process. Many times these processes are viewed through
the eyeglasses of security, because that’s the reason for the activity, but this is a perfect
chance to enhance and improve upon the same processes to increase productivity.
When you look at many business processes taking place in all types of organizations,
you commonly find a duplication of efforts, manual steps that can be easily automated,
or ways to streamline and reduce time and effort that are involved in certain tasks. This
is commonly referred to as process reengineering.

When an organization is developing its security blueprints, those blueprints must
be integrated into the business processes to be effective. This can allow for process man-
agement to be refined and calibrated. This allows for security to be integrated in system
life cycles and day-to-day operations.

Security effectiveness deals with metrics, meeting service level agreement (SLA) re-
quirements, return on investment (ROI), meeting set baselines, and providing manage-
ment with a dashboard or balanced scorecard system. These are ways to determine how
useful the current security solutions and architecture as a whole are performing.

Many organizations are just getting to this point of their architecture, because there
is a need to ensure that the countermeasures in place are providing the necessary level
of protection and that finite funds are being used properly. Once baselines are set, then
metrics can be developed to verify baseline compliancy. These metrics are then rolled
up to management in a format they can understand that shows them the health of the
organization’s security posture and compliance levels. This also allows management to
make informed business decisions. Security affects almost everything today in business,
so this information should be readily available to senior management in a form they
can actually use.

Chapter 5: Security Architecture and Design

103

Business
Process
Integration into
business decisions,
business impact analysis,
strategic leadership

Analysis and
Understanding
Baselining, acceptable risk level,
historical analysis, prediction of events

Operations Management
Asset inventory, discovery, monitoring,
responding, administration, alarm correlation

Component Management
Configuration management, installation, maintenance of
individual products

Figure 5-21 IT Security Management and the IT Operations Maturity Model

Figure 5-21 shows how organizations are commonly evolving in their security
maturity.

All these items (strategic alignment, process enhancement, business enablement,
and security effectiveness) can only take place if there is a strong foundation of support-
ing security blueprints. The blueprints outline the actual security mechanisms that will
be used to provide the organization with the level of protection it needs. Blueprints that
can be in place include access control, identity management, asset management, inci-
dent response, infrastructure security, application security, and so on. Without a strong
and supporting security foundation, none of the other goals can actually be accom-
plished. It would be like trying to build a house on sand.

NOTE An enterprise security foundation cannot be built without
established security zones, which provides boundaries based on trust,

which specifies what actually needs to be protected. This will allow protection
and risk management to be carried out in a standardized manner across

the enterprise.

CISSP All-in-One Exam Guide

104

A Few Threats to Review

Now that we have talked about how everything is supposed to work, let’s take a quick
look at some of the things that can go wrong when designing a system.

Software almost always has bugs and vulnerabilities. The rich functionality de-
manded by users brings about deep complexity, which usually opens the doors to prob-
lems in the computer world. Also, vulnerabilities are always around because attackers
continually find ways of using system operations and functionality in a negative and
destructive way. Just like there will always be cops and robbers, there will always be at-
tackers and security professionals. It is a game of trying to outwit each other and seeing
who will put the necessary effort into winning the game.

NOTE Carnegie Mellon University estimates there are 5 to |5 bugs in every
1000 lines of code.Windows 2000 has 40—-60 million lines of code.

Maintenance Hooks

In the programming world, maintenance hooks are a type of backdoor. They are instruc-
tions within software that only the developer knows about and can invoke, and which
give the developer easy access to the code. They allow the developer to view and edit the
code without having to go through regular access controls. During the development
phase of the software, these can be very useful, but if they are not removed before the
software goes into production, they can cause major security issues.

The maintenance hook is usually initiated by a random sequence of keystrokes that
provides access into the software without having to go through normal access control
and security checks and mechanisms.

An application that has a maintenance hook enables the developer to execute com-
mands by using a specific sequence of keystrokes. Once this is done successfully, the
developer can be inside the application looking directly at the code or configuration
files. She might do this to watch problem areas within the code, check variable popula-
tion, export more code into the program, or fix problems she sees taking place. Al-
though this sounds nice and healthy, if an attacker finds out about this maintenance
hook, he can take more sinister actions. So all maintenance hooks need to be removed
from software before it goes into production.

NOTE Many would think that since security is more in the minds of people
today, that maintenance hooks would be a thing of the past. This is not

true. Developers are still using maintenance hooks, because of their lack of
understanding or care of security issues,and many maintenance hooks still
reside in older software that organizations are using.

Countermeasures

Because maintenance hooks are usually inserted by programmers, they are the ones
who usually have to take them out before the programs go into production. Code re-
views and unit and quality assurance testing should always be on the lookout for back-

Chapter 5: Security Architecture and Design

105

doors, in case the programmer overlooked extracting them. Because maintenance hooks
are within the code of an application or system, there is not much a user can do to pre-
vent their presence, but when a vendor finds out a backdoor exists in its product, it
usually develops and releases a patch to reduce this vulnerability. Because most vendors
sell their software without including the associated source code, it may be very difficult
for companies who have purchased software to identify backdoors. The following lists
some preventive measures against backdoors:

e Use a host intrusion detection system to watch for any attackers using
backdoors into the system.

e Use file system encryption to protect sensitive information.

e Implement auditing to detect any type of backdoor use.

Time-of-Check/Time-of-Use Attacks

Specific attacks can take advantage of the way a system processes requests and performs
tasks. A time-of-check/time-of-use (TOC/TOU) attack deals with the sequence of steps a
system uses to complete a task. This type of attack takes advantage of the dependency
on the timing of events that take place in a multitasking operating system.

As stated previously, operating systems and applications are in reality just lines and
lines of instructions. An operating system must carry out instruction 1, then instruction
2, then instruction 3, and so on. This is how it is written. If an attacker can get in be-
tween instruction 2 and 3 and manipulate something, she can control the result of
these activities.

An example of a TOC/TOU attack is if process 1 validates the authorization of a user
to open a noncritical text file and process 2 carries out the open command. If the at-
tacker can change out this noncritical text file with a password file while process 1 is
carrying out its task, she has just obtained access to this critical file. (It is a flaw within
the code that allows this type of compromise to take place.)

NOTE This type of attack is also referred to as an asynchronous attack.
Asynchronous describes a process in which the timing of each step may
vary.The attack gets in between these steps and modifies something. Race
conditions are also considered TOC/TOU attacks by some in the industry.

A race condition is when two different processes need to carry out their tasks on one
resource. The processes need to follow the correct sequence. Process 1 needs to carry out
its work before process 2 accesses the same resource and carries out its tasks. If process
2 goes before process 1, the outcome could be very different. If an attacker can manipu-
late the processes so process 2 does its task first, she can control the outcome of the
processing procedure. Let’s say process 1's instructions are to add 3 to a value and pro-
cess 2's instructions are to divide by 15. If process 2 carries out its tasks before process
1, the outcome would be different. So if an attacker can make process 2 do its work
before process 1, she can control the result.

CISSP All-in-One Exam Guide

106

Looking at this issue from a security perspective, there are several types of race con-
dition attacks that are quite concerning. If a system splits up the authentication and
authorization steps, an attacker could be authorized before she is even authenticated.
For example, in the normal sequence, process 1 verifies the authentication before al-
lowing a user access to a resource, and process 2 authorizes the user to access the re-
source. If the attacker makes process 2 carry out its tasks before process 1, she can access
a resource without the system making sure she has been authenticated properly.

So although the terms “race condition” and “TOC/TOU attack” are sometimes used
interchangeably, in reality they are two different things. A race condition is an attack in
which an attacker makes processes execute out of sequence to control the result. A
TOC/TOU attack is when an attacker jumps in between two tasks and modifies some-
thing to control the result.

Countermeasures

It would take a dedicated attacker with great precision to perform these types of attacks,
but it is possible and has been done. To protect against race condition attacks, it is best
to not split up critical tasks that can have their sequence altered. This means the system
should use atomic operations where only one system call is used to check authentica-
tion and then grant access in one task. This would not give the processor the opportu-
nity to switch to another process in between two tasks. Unfortunately, using these types
of atomic operations is not always possible.

To avoid TOC/TOU attacks, it is best if the operating system can apply software
locks to the items it will use when it is carrying out its “checking” tasks. So if a user re-
quests access to a file, while the system is validating this user’s authorization, it should
put a software lock on the file being requested. This ensures the file cannot be deleted
and replaced with another file. Applying locks can be carried out easily on files, but it
is more challenging to apply locks to database components and table entries to provide
this type of protection.

Buffer Overflows

My cup runneth over and so does my buffer.

Today, many people know the term buffer overflow and the basic definition, but it is
important for security professionals to understand what is going on beneath the covers.

A buffer overflow takes place when too much data are accepted as input to an ap-
plication or operating system. A buffer is an allocated segment of memory. A buffer can
be overflowed arbitrarily with too much data, but for it to be of any use to an attacker,
the code inserted into the buffer must be of a specific length, followed up by com-
mands the attacker wants executed. So, the purpose of a buffer overflow may be either
to make a mess, by shoving arbitrary data into various memory segments, or to accom-
plish a specific task, by pushing into the memory segment a carefully crafted set of data
that will accomplish a specific task. This task could be to open a command shell with
administrative privilege or execute malicious code.

Let's take a deeper look at how this is accomplished. Software may be written to
accept data from a user, web site, database, or another application. The accepted data
needs something to happen to it, because it has been inserted for some type of ma-
nipulation or calculation, or to be used as a parameter to be passed to a procedure. A

Chapter 5: Security Architecture and Design

procedure is code that can carry out a specific type of function on the data and return
the result to the requesting software, as shown in Figure 5-22.

When a programmer writes a piece of software that will accept data, this data will
be stored in a variable. When this software calls upon a procedure to carry out some
type of functionality, it stacks the necessary instructions and data in a memory segment
for the procedure to read from. (Memory stacks were explained earlier in the chapter,
but we will go over them again in this section.)

The data accepted from an outside entity is placed in a variable. This variable must
have a place to live in memory, which is called a buffer. A buffer is like a memory con-
tainer for data. The buffer needs to be the right size to accept the inputted data. So if the
input is supposed to be one character, the buffer should be one byte in size. If a program-
mer does not ensure that only one byte of data is being inserted into the software, then
someone can input several characters at once and thus overflow that specific buffer.

The buffers hold data, which are placed on a memory stack. You can think of a buf-
fer as a small bucket to hold water (data). We have several of these small buckets stacked
on top of one another (memory stack), and if too much water is poured into the top
bucket, it spills over into the buckets below it (buffer overflow) and overwrites the in-
structions and data on the memory stack.

Datal input —P Application
Data2 input —— P

W‘;@JJ

. Variable
Variable
Variable _<_7D1
Variable _@_’
Procedure
Return pointer _®_’
Stack
Application
Variable
3 K
Variable
Variable
Return control
Variable back to
application Procedure
Return pointer
Result after computation

Figure 5-22 A memory stack has individual buffers to hold instructions and data.

107

CISSP All-in-One Exam Guide

108

What Is a Stack and How Does It Work?

If you are interacting with an application that calculates mortgage rates, you have to put
in the parameters that need to be calculated—years of loan, percentage of interest rate,
and amount of loan. These parameters are passed into empty variables and put in a
linear construct (memory stack), which acts like a queue for the procedure to pull from
when it carries out this calculation. The first thing your mortgage rate application lays
down on the stack is its return pointer. This is a pointer to the requesting application'’s
memory address that tells the procedure to return control to the requesting application
after the procedure has worked through all the values on the stack. The mortgage rate
application then places on top of the return pointer the rest of the data you have input
and sends a request to the procedure to carry out the necessary calculation, as illus-
trated in Figure 5-22. The procedure takes the data off the stack starting at the top, so
they are first in, last off (FILO). The procedure carries out its functions on all the data
and returns the result and control back to the requesting mortgage rate application
once it hits the return pointer in the stack.

So the stack is just a segment in memory that allows for communication between
the requesting application and the procedure or subroutine. The potential for problems
comes into play when the requesting application does not carry out proper bounds
checking to ensure the inputted data are of an acceptable length. Look at the following
C code to see how this could happen:

#include<stdio.h>

int main(int argc, char **argv).({
char bufl [5] = "1111";

char buf2 [7] = "222222";

strcpy (buf2, "3333333333");
printf ("%s\n", buf2);

printf ("%s\n", bufl);

return 0;}

CAUTION You do not need to know C programming for the CISSP exam.
We are digging deep into this topic because buffer overflows are so common
and have caused grave security breaches over the years. For the CISSP exam,
you just need to understand the overall concept of a buffer overflow.

Here, we are setting up a buffer (buf1) to hold four characters and a NULL value,
and a second buffer (buf2) to hold six characters and a NULL value. (The NULL values
indicate the buffer’s end place in memory.) If we viewed these buffers, we would see the
following:

Buf2
\0 222222

Bufl
\O01 111

The application then accepts ten 3s into buf2, which can only hold six characters.
So the six variables in buf2 are filled and then the four variables in buf1 are filled, over-
writing the original contents of bufl. This took place because the strcpy command
did not make sure the buffer was large enough to hold that many values. So now if we
looked at the two buffers, we would see the following:

Chapter 5: Security Architecture and Design

Buf2

\0 333333
Bufl

\0 3333

But what gets even more interesting is when the actual return pointer is written
over, as shown in Figure 5-23. In a carefully crafted buffer overflow attack, the stack is
filled properly so the return pointer can be overwritten and control is given to the mali-
cious instructions that have been loaded onto the stack instead of back to the request-
ing application. This allows the malicious instructions to be executed in the security
context of the requesting application. If this application is running in a privileged
mode, the attacker has more permissions and rights to carry out more damage.

The attacker must know the size of the buffer to overwrite and must know the ad-
dresses that have been assigned to the stack. Without knowing these addresses, she
could not lay down a new return pointer to her malicious code. The attacker must also
write this dangerous payload to be small enough so it can be passed as input from one
procedure to the next.

Windows' core is written in the C language and has layers and layers of object-ori-
ented code on top of it. When a procedure needs to call upon the operating system to
carry out some type of task, it calls upon a system service via an API call. The API works
like a doorway to the operating system'’s functionality.

C:\WINDOWS\System32\cmd.exe _|

> X

C:\Documents and Settings>Let’s start the real attack now_

< | >

Malicious input —— Application
Malicious input ——|

Malicious input ——|

Garbage
| g Garbage
P Malicious code [
l
Garbage
P Return pointer

Stack

Figure 5-23 A buffer overflow attack

109

CISSP All-in-One Exam Guide

10

The C language is susceptible to buffer overflow attacks because it allows for direct
pointer manipulations to take place. Specific commands can provide access to low-
level memory addresses without carrying out bounds checking. The C functions that do
perform the necessary boundary checking include sprintf (), strcat(), strcpy
(),and vsprintf ().

An operating system must be written to work with specific CPU architectures. These
architectures dictate system memory addressing, protection mechanisms, and modes of
execution, and work with specific instruction sets. This means a buffer overflow attack
that works on an Intel chip will not necessarily work on a Motorola or a SPARC proces-
sor. These different processors set up the memory address of the stacks differently, so
the attacker may have to craft a different buffer overflow code for different platforms.
This is usually not an obstacle since most times the code is already written and avail-
able via different hacking web sites.

Countermeasures

Buffer overflows are in the source code of various applications and operating systems.
They have been around since programmers started developing software. This means it is
very difficult for a user to identify and fix them. When a buffer overflow is identified, the
vendor usually sends out a patch. So keeping systems current on updates, hotfixes, and
patches is usually the best countermeasure. Some products installed on systems can also
watch for input values that might result in buffer overflows. But the best countermeasure
is proper programming. This means to use bounds checking. If an input value is only
supposed to be nine characters, then the application should only accept nine characters
and no more. Some languages are more susceptible to buffer overflows than others. So
programmers should understand these issues, use the right languages for the right pur-
poses, and carry out code review to identify buffer overflow vulnerabilities.

Summary

The architecture of a computer system is very important and comprises many topics.
The system has to ensure that memory is properly segregated and protected, ensure that
only authorized subjects access objects, ensure that untrusted processes cannot perform
activities that would put other processes at risk, control the flow of information, and
define a domain of resources for each subject. It also must ensure that if the computer
experiences any type of disruption, it will not result in an insecure state. Many of these
issues are dealt with in the system'’s security policy, and the security model is built to
support the requirements of this policy.

Once the security policy, model, and architecture have been developed, the com-
puter operating system, or product, must be built, tested, evaluated, and rated. An eval-
uation is done by comparing the system to predefined criteria. The rating assigned to
the system depends upon how it fulfills the requirements of the criteria. Customers use
this rating to understand what they are really buying and how much they can trust this
new product. Once the customer buys the product, it must be tested within their own
environment to make sure it meets their company’s needs, which takes place through
certification and accreditation processes.

Chapter 5: Security Architecture and Design

Quick Tips

e Two systems can have the exact same hardware, software components, and
applications, but provide different levels of protection because of the different
security policies and security models the two systems were built upon.

e A CPU contains a control unit, which controls the timing of the execution of
instructions and data, and an ALU, which performs mathematical functions
and logical operations.

e Most systems use protection rings. The more privileged processes run in the
lower-numbered rings and have access to all or most of the system resources.
Applications run in higher-numbered rings and have access to a smaller
amount of resources.

e Operating system processes are executed in privileged or supervisor mode, and
applications are executed in user mode, also known as “problem state.”

e Secondary storage is nonvolatile and can be a hard drive, CD-ROM drive,
floppy drive, tape backup, or a jump drive.

e Virtual storage combines RAM and secondary storage so the system seems to
have a larger bank of memory.

e A deadlock situation occurs when two processes are trying to access the same
resource at the same time.

e Security mechanisms can focus on different issues, work at different layers,
and vary in complexity.

¢ The more complex a security mechanism is, the less amount of assurance it
can usually provide.

e Not all system components fall under the trusted computing base (TCB),
which includes only those system components that enforce the security policy
directly and protect the system. These components are within the security
perimeter.

e Components that make up the TCB are hardware, software, and firmware that
provide some type of security protection.

e A security perimeter is an imaginary boundary that has trusted components
within it (those that make up the TCB) and untrusted components outside it.

e The reference monitor concept is an abstract machine that ensures all subjects
have the necessary access rights before accessing objects. Therefore, it mediates
all accesses to objects by subjects.

¢ The security kernel is the mechanism that actually enforces the rules of the
reference monitor concept.

e The security kernel must isolate processes carrying out the reference monitor
concept, must be tamperproof, must be invoked for each access attempt, and
must be small enough to be properly tested.

CISSP All-in-One Exam Guide

112

A security domain is all the objects available to a subject.

Processes need to be isolated, which can be done through segmented memory
addressing, encapsulation of objects, time multiplexing of shared resources,
naming distinctions, and virtual mapping.

The level of security a system provides depends upon how well it enforces the
security policy.

A multilevel security system processes data at different classifications (security
levels), and users with different clearances (security levels) can use the system.

Processes should be assigned least privilege so they have just enough system
privileges to fulfill their tasks and no more.

Some systems provide security at different layers of their architectures, which
is called layering. This separates the processes and provides more protection
for them individually.

Data hiding occurs when processes work at different layers and have layers of
access control between them. Processes need to know how to communicate
only with each other’s interfaces.

A security model maps the abstract goals of a security policy to computer
system terms and concepts. It gives the security policy structure and provides a
framework for the system.

A closed system is often proprietary to the manufacturer or vendor, whereas
the open system allows for more interoperability.

The Bell-LaPadula model deals only with confidentiality, while the Biba and
Clark-Wilson models deal only with integrity.

A state machine model deals with the different states a system can enter. If
a system starts in a secure state, all state transitions take place securely, and
the system shuts down and fails securely, the system will never end up in an
insecure state.

A lattice model provides an upper bound and a lower bound of authorized
access for subjects.

An information flow security model does not permit data to flow to an object
in an insecure manner.

The Bell-LaPadula model has a simple security rule, which means a subject
cannot read data from a higher level (no read up). The *-property rule means
a subject cannot write to an object at a lower level (no write down). The strong
star property rule dictates that a subject can read and write to objects at its
own security level.

The Biba model does not let subjects write to objects at a higher integrity level
(no write up), and it does not let subjects read data at a lower integrity level
(no read down). This is done to protect the integrity of the data.

The Bell-LaPadula model is used mainly in military systems. The Biba and
Clark-Wilson models are used in the commercial sector.

Chapter 5: Security Architecture and Design

113

The Clark-Wilson model dictates that subjects can only access objects through
applications. This model also illustrates how to provide functionality for
separation of duties and requires auditing tasks within software.

If a system is working in a dedicated security mode, it only deals with one
level of data classification, and all users must have this level of clearance to
be able to use the system.

Compartmented and multilevel security modes enable the system to process
data classified at different classification levels.

Trust means that a system uses all of its protection mechanisms properly

to process sensitive data for many types of users. Assurance is the level of
confidence you have in this trust and that the protection mechanisms behave
properly in all circumstances predictably.

The Orange Book, also called Trusted Computer System Evaluation Criteria
(TCSEC), was developed to evaluate systems built to be used mainly by the
military. Its use was expanded to evaluate other types of products.

In the Orange Book, D classification means a system provides minimal
protection and is used for systems that were evaluated but failed to meet the
criteria of higher divisions.

In the Orange Book, the C division deals with discretionary protection, and
the B division deals with mandatory protection (security labels).

In the Orange Book, the A classification means the system'’s design and level of
protection are verifiable and provide the highest level of assurance and trust.

In the Orange Book, C2 requires object reuse protection and auditing.
In the Orange Book, B1 is the first rating that requires security labels.

In the Orange Book, B2 requires security labels for all subjects and devices, the
existence of a trusted path, routine covert channel analysis, and the provision
of separate administrator functionality.

The Orange Book deals mainly with stand-alone systems, so a range of books
were written to cover many other topics in security. These books are called the
Rainbow Series.

ITSEC evaluates the assurance and functionality of a system’s protection
mechanisms separately, whereas TCSEC combines the two into one rating.

The Common Criteria was developed to provide globally recognized
evaluation criteria and is in use today. It combines sections of TCSEC, ITSEC,
CTCPEC, and the Federal Criteria.

The Common Criteria uses protection profiles and ratings from EAL1 to EAL7.

Certification is the technical evaluation of a system or product and its security
components. Accreditation is management’s formal approval and acceptance
of the security provided by a system.

CISSP All-in-One Exam Guide

114

A covert channel is an unintended communication path that transfers data in
a way that violates the security policy. There are two types: timing and storage
covert channels.

A covert timing channel enables a process to relay information to another
process by modulating its use of system resources.

A covert storage channel enables a process to write data to a storage medium
so another process can read it.

A maintenance hook is developed to let a programmer into the application
quickly for maintenance. This should be removed before the application goes
into production or it can cause a serious security risk.

An execution domain is where instructions are executed by the CPU. The
operating system’s instructions are executed in a privileged mode, and
applications’ instructions are executed in user mode.

Process isolation ensures that multiple processes can run concurrently and
the processes will not interfere with each other or affect each other’s memory
segments.

The only processes that need complete system privileges are located in the
system'’s kernel.

TOC/TOU stands for time-of-check/time-of-use. This is a class of
asynchronous attacks.

The Biba model addresses the first goal of integrity, which is to prevent
unauthorized users from making modifications.

The Clark-Wilson model addresses all three integrity goals: prevent unauthorized
users from making modifications, prevent authorized users from making
improper modifications, and maintain internal and external consistency.

In the Clark-Wilson model, users can only access and manipulate objects
through programs. It uses access triple, which is subject-program-object.

Questions

Please remember that these questions are formatted and asked in a certain way for a
reason. Keep in mind that the CISSP exam is asking questions at a conceptual level.
Questions may not always have the perfect answer, and the candidate is advised against
always looking for the perfect answer. Instead, the candidate should look for the best
answer in the list.

1. What flaw creates buffer overflows?

A. Application executing in privileged mode
B. Inadequate memory segmentation
C. Inadequate protection ring use

D. Insufficient bounds checking

Chapter 5: Security Architecture and Design

115

. The operating system performs all except which of the following tasks?
A. Memory allocation

B. Input and output tasks

C. Resource allocation

D. User access to database views

. If an operating system allows sequential use of an object without refreshing it,
what security issue can arise?

A. Disclosure of residual data

B. Unauthorized access to privileged processes

C. Data leakage through covert channels

D. Compromise of the execution domain

. What is the final step in authorizing a system for use in an environment?
A. Certification

B. Security evaluation and rating

C. Accreditation

D. Verification

. What feature enables code to be executed without the usual security checks?
A. Temporal isolation

B. Maintenance hook

C. Race conditions

D. Process multiplexing

. If a component fails, a system should be designed to do which of the
following?

A. Change to a protected execution domain

B. Change to a problem state

C. Change to a more secure state

D. Release all data held in volatile memory

. What security advantage does firmware have over software?
A. Itis difficult to modify without physical access.

B. It requires a smaller memory segment.

C. It does not need to enforce the security policy.

D. It is easier to reprogram.

. Which is the first level of the Orange Book that requires classification labeling
of data?

A. B3
B. B2

CISSP All-in-One Exam Guide

16

10.

11.

12.

13.

14.

C. B1
D. C2

. Which of the following best describes the security kernel?

A. A software component that monitors activity and writes security events to
an audit log

B. A software component that determines if a user is authorized to perform a
requested operation

C. A software component that isolates processes and separates privileged and
user modes

D. A software component that works in the center protection ring and
provides interfaces between trusted and untrusted objects

The Information Technology Security Evaluation Criteria was developed for
which of the following?

A. International use

B. U.S. use

C. European use

D. Global use

A security kernel contains which of the following?

A. Software, hardware, and firmware

B. Software, hardware, and system design

C. Security policy, protection mechanisms, and software
D. Security policy, protection mechanisms, and system design
What is the purpose of base and limit registers?

A. Countermeasure buffer overflows

B. Time sharing of system resources, mainly the CPU

C. Process isolation

D. TCB enforcement

A guard is commonly used with a classified system. What is the main purpose
of implementing and using a guard?

A. To ensure that less trusted systems only receive acknowledgments and not
messages

B. To ensure proper information flow

C. To ensure that less trusted and more trusted systems have open
architectures and interoperability

D. To allow multilevel and dedicated mode systems to communicate
The trusted computing base (TCB) controls which of the following?
A. All trusted processes and software components

B. All trusted security policies and implementation mechanisms

Chapter 5: Security Architecture and Design

15.

16.

17.

18.

19.

20.

L7

C. All trusted software and design mechanisms
D. All trusted software and hardware components

What is the imaginary boundary that separates components that maintain
security from components that are not security related?

A. Reference monitor

B. Security kernel

C. Security perimeter

D. Security policy

Which model deals only with confidentiality?

A. Bell-LaPadula

B. Clark-Wilson

C. Biba

D. Reference monitor

What is the best description of a security kernel from a security point of view?
A. Reference monitor

B. Resource manager

C. Memory mapper

D. Security perimeter

When is the security of a system most effective and economical?

A. When it is designed and implemented from the beginning of the
development of the system

B. When it is designed and implemented as a secure and trusted front end
C. When it is customized to fight specific types of attacks
D. When the system is optimized before security is added

In secure computing systems, why is there a logical form of separation used
between processes?

A. Processes are contained within their own security domains so each does
not make unauthorized accesses to other processes or their resources.

B. Processes are contained within their own security perimeter so they can
only access protection levels above them.

C. Processes are contained within their own security perimeter so they can
only access protection levels equal to them.

D. The separation is hardware and not logical in nature.

What type of attack is taking place when a higher-level subject writes data to a
storage area and a lower-level subject reads it?

A. TOC/TOU
B. Covert storage attack

CISSP All-in-One Exam Guide

18

21.

22,

23

24.

25.

C. Covert timing attack

D. Buffer overflow

What type of rating does the Common Criteria give to products?
A. PP

B. EPL

C. EAL

D. A-D

Which best describes the *-integrity axiom?

A. No write up in the Biba model

B. No read down in the Biba model

C. No write down in the Bell-LaPadula model
D. No read up in the Bell-LaPadula model

. Which best describes the simple security rule?

A. No write up in the Biba model

B. No read down in the Biba model

C. No write down in the Bell-LaPadula model
D. No read up in the Bell-LaPadula model

Which of the following was the first mathematical model of a multilevel
security policy used to define the concepts of a security state and mode of
access, and to outline rules of access?

A. Biba

B. Bell-LaPadula

C. Clark-Wilson

D. State machine

Which of the following is a true statement pertaining to memory addressing?

A. The CPU uses absolute addresses. Applications use logical addresses.
Relative addresses are based on a known address and an offset value.

B. The CPU uses logical addresses. Applications use absolute addresses.
Relative addresses are based on a known address and an offset value.

C. The CPU uses absolute addresses. Applications use relative addresses.
Logical addresses are based on a known address and an offset value.

D. The CPU uses absolute addresses. Applications use logical addresses.
Absolute addresses are based on a known address and an offset value.

Chapter 5: Security Architecture and Design

19

Answers

1. D. A buffer overflow takes place when too much data are accepted as input.
Programmers should implement the correct security controls to ensure this
does not take place. This means they need to perform bounds checking and
parameter checking to ensure that only the allowed amount of data is actually
accepted and processed by the system.

2. D. The operating system has a long list of responsibilities, but implementing
database views is not one of them. This is the responsibility of the database
management software.

3. A. If an object has confidential data and these data are not properly erased
before another subject can access them, this leftover or residual data can be
accessible. This can compromise the data and system’s security by disclosing
this confidential information. This is true of media (hard drives) and memory
segments.

4. C. Certification is a technical review of a product, and accreditation is
management’s formal approval of the findings of the certification process.
This question asked you which step was the final step in authorizing a
system before it is used in an environment, and that is what accreditation
is all about.

5. B. Maintenance hooks get around the system'’s or application’s security and
access control checks by allowing whomever knows the key sequence to
access the application and most likely its code. Maintenance hooks should be
removed from any code before it gets into production.

6. C. The state machine model dictates that a system should start up securely,
carry out secure state transitions, and even fail securely. This means that if the
system encounters something it deems unsafe, it should change to a more
secure state for self-preservation and protection.

7. A. Firmware is a type of software that is held in a ROM or EROM chip. It
is usually used to allow the computer to communicate with some type of
peripheral device. The system’s BIOS instructions are also held in firmware
on the motherboard. In most situations, firmware cannot be modified unless
someone has physical access to the system. This is different from other types
of software that may be modified remotely or through logical means.

8. C. These assurance ratings are from the Orange Book. B levels on up require
security labels be used, but the question asks which is the first level to require
this. B1 comes before B2 and B3, thus it is the correct answer.

9. B. A security kernel is the software component that enforces access control for
the operating system. A reference monitor is the abstract machine that holds
all of the rules of access for the system. The security kernel is the active entity

CISSP All-in-One Exam Guide

120

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

that enforces the reference monitor’s rules. They control the access attempts of
any and all subjects; a user is just one example of a subject.

C. In ITSEC, the I does not stand for international, it stands for information.
This set of criteria was developed to be used by European countries to evaluate
and rate their products.

A. The security kernel makes up the main component of the TCB, which is
comprised of software, hardware, and firmware. The security kernel performs
a lot of different activities to protect the system. Enforcing the reference
monitor’s access rules is just one of those activities.

C. The CPU has base and limit registers that contain the starting and ending
memory addresses a process is allowed to work within. This ensures the
process is isolated from other processes in that it cannot interact with another
process’s memory segment.

B. The guard accepts requests from the less trusted entity, reviews the request
to make sure it is allowed, and then submits the request on behalf of the less
trusted system. The goal is to ensure that information does not flow from a
high security level to a low security level in an unauthorized manner.

D. The TCB contains and controls all protection mechanisms within the
system, whether they are software, hardware, or firmware.

C. The security perimeter is a boundary between items that are within the TCB
and items that are outside the TCB. It is just a mark of delineation between
these two groups of items.

A. The Bell-LaPadula model was developed for the U.S. government with
the main goal of keeping sensitive data unreachable to those who were
not authorized to access and view the same. This model was the first
mathematical model of a multilevel security policy used to define the
concepts of a security state and mode of access and to outline rules of
access. The Biba and Clark-Wilson models do not deal with confidentiality,
but with integrity instead.

A. The security kernel is a portion of the operating system’s kernel and
enforces the rules outlined in the reference monitor. It is the enforcer
of the rules and is invoked each time a subject makes a request to access
an object.

A. Tt is difficult to add useful and effective security at the end of developing

a product or to add security as a front end to an existing product. Adding
security at the end of a project is usually more expensive because it will break
items and the team will need to go back to the drawing board and redesign
and recode portions of the product.

A. Processes are assigned their own variables, system resources, and memory
segments, which make up their domain. This is done so they do not corrupt
each other’s data or processing activities.

Chapter 5: Security Architecture and Design

20.

21.

22,

23.

24.

25.

B. A covert channel is being used when something is using a resource for
communication purposes, and that is not the reason this resource was created.
A process can write to some type of shared media or storage place that
another process will be able to access. The first process writes to this media
and the second process reads it. This action goes against the security policy
of the system.

C. The Common Criteria uses a different assurance rating system than the
previously used criteria. It has packages of specifications that must be met
for a product to obtain the corresponding rating. These ratings and packages
are called Evaluation Assurance Levels (EALs). Once a product achieves any
type of rating, customers can view this information on an Evaluated Products
List (EPL).

A. The *-integrity axiom (or star integrity axiom) indicates that a subject of a
lower integrity level cannot write to an object of a higher integrity level. This
rule is put into place to protect the integrity of the data that resides at the
higher level.

D. The simple security rule is implemented to ensure that any subject at a
lower security level cannot view data that resides at a higher level. The reason
this type of rule is put into place is to protect the confidentiality of the data
that resides at the higher level. This rule is used in the Bell-LaPadula model.
Remember that if you see “simple” in a rule, it pertains to reading, while *

or “star” pertains to writing.

B. This is a formal definition of the Bell-LaPadula model, which was
created and implemented to protect government and military confidential
information.

A. The physical memory addresses that the CPU uses are called absolute
addresses. The indexed memory addresses that software uses are referred

to as logical addresses. And relative addresses are based on a known address
with an offset value applied.

121

